Graphe birégulierDans la théorie des graphes, un graphe birégulier est un graphe biparti dans lequel tous les sommets de chacune des deux parties du graphe ont le même degré. Notons et les deux parties d'un graphe birégulier. Si le degré des sommets de est et si le degré des sommets de est , le graphe est dit -birégulier. vignette|Le graphe biparti complet est -birégulier. Tout graphe biparti complet (figure) est -birégulier. vignette|gauche|Le graphe du dodécaèdre rhombique est birégulier. Le graphe du dodécaèdre rhombique (figure) est -birégulier.
Problème de l'arbre de SteinerEn algorithmique, le problème de l'arbre de Steiner est un problème d'optimisation combinatoire. Il porte le nom du mathématicien Jakob Steiner. Ce problème est proche du problème de l'arbre couvrant minimal et a des applications en conception de réseaux, notamment les circuits électroniques et les télécommunications. Il existe plusieurs variantes du problème. Dans un espace métrique, étant donné un ensemble de points P, un arbre pour P est un réseau (c'est-à-dire un ensemble de chemins connectés) tel que tous les points soient reliés, et un arbre est dit de Steiner si la longueur totale du réseau est minimale.
Partition en cliquesEn théorie des graphes, une couverture par cliques ou une partition en cliques d'un graphe non orienté est une partition des sommets du graphe en cliques, c'est-à-dire en des ensembles de sommets à l'intérieur desquels deux sommets sont adjacents. Un couverture par cliques minimale est une couverture de taille minimale, c'est-à-dire par un nombre minimal de cliques. Le problème de la couverture par cliques est le problème algorithmique qui consiste à trouver une couverture par cliques minimale.
Well-covered graphIn graph theory, a well-covered graph is an undirected graph in which every minimal vertex cover has the same size as every other minimal vertex cover. Equivalently, these are the graphs in which all maximal independent sets have equal size. Well-covered graphs were defined and first studied by Michael D. Plummer in 1970. The well-covered graphs include all complete graphs, balanced complete bipartite graphs, and the rook's graphs whose vertices represent squares of a chessboard and edges represent moves of a chess rook.
Cycle double coverIn graph-theoretic mathematics, a cycle double cover is a collection of cycles in an undirected graph that together include each edge of the graph exactly twice. For instance, for any polyhedral graph, the faces of a convex polyhedron that represents the graph provide a double cover of the graph: each edge belongs to exactly two faces. It is an unsolved problem, posed by George Szekeres and Paul Seymour and known as the cycle double cover conjecture, whether every bridgeless graph has a cycle double cover.
Matrice d'adjacenceEn mathématiques, en théorie des graphes, en informatique, une matrice d'adjacence pour un graphe fini à n sommets est une matrice de dimension n × n dont l'élément non diagonal a est le nombre d'arêtes liant le sommet i au sommet j. L'élément diagonal a est le nombre de boucles au sommet i (pour des graphes simples, ce nombre est donc toujours égal à 0 ou 1). Cet outil mathématique est très utilisé comme structure de données en informatique (tout comme la représentation par liste d'adjacence), mais intervient aussi naturellement dans les chaînes de Markov.
Rainbow matchingIn the mathematical discipline of graph theory, a rainbow matching in an edge-colored graph is a matching in which all the edges have distinct colors. Given an edge-colored graph G = (V,E), a rainbow matching M in G is a set of pairwise non-adjacent edges, that is, no two edges share a common vertex, such that all the edges in the set have distinct colors. A maximum rainbow matching is a rainbow matching that contains the largest possible number of edges. Rainbow matchings are of particular interest given their connection to transversals of Latin squares.
Problème de flot maximumthumb|right|Un exemple de graphe de flot avec un flot maximum. la source est , et le puits . Les nombres indiquent le flot et la capacité. Le problème de flot maximum consiste à trouver, dans un réseau de flot, un flot réalisable depuis une source unique et vers un puits unique qui soit maximum. Quelquefois, on ne s'intéresse qu'à la valeur de ce flot. Le s-t flot maximum (depuis la source s vers le puits t) est égal à la s-t coupe minimum du graphe, comme l'indique le théorème flot-max/coupe-min.
Split (graph theory)In graph theory, a split of an undirected graph is a cut whose cut-set forms a complete bipartite graph. A graph is prime if it has no splits. The splits of a graph can be collected into a tree-like structure called the split decomposition or join decomposition, which can be constructed in linear time. This decomposition has been used for fast recognition of circle graphs and distance-hereditary graphs, as well as for other problems in graph algorithms.
Coût moyenLe coût moyen est le coût total divisé par le nombre d'unités ou de personnes concernées par ce coût. Le coût moyen permet de déterminer une zone de bénéfice pour l'activité de l'organisation. Le coût total moyen CTM est donc le rapport entre le coût total et la quantité produite tel que : . Par exemple, le coût moyen de la production d’une voiture, lorsqu'on produit cent () voitures pour (), est de : en effet, . Coût moyen pondéré du capital Coût moyen incrémental de long terme Coût marginal Prix Moyen Ca