Fonction de PearsonLes fonctions de Pearson ont été créées pour représenter des distributions unimodales. Il en existe douze. Elles ont été inventées par Karl Pearson à la fin du et au début du . Le système de Pearson a été originellement conçu afin de modéliser des observations visiblement asymétriques. Les méthodes pour ajuster un modèle théorique aux deux premiers cumulants ou moments de données observées : toute distribution peut être étendue directement une famille de distributions adaptée.
Croissance démographiqueLa croissance démographique ou accroissement démographique ou variation totale de population est la différence entre l’effectif d’une population à la fin et au début d’une période donnée (généralement un an). Elle peut être exprimée par le taux d'évolution du nombre d’individus au sein d’une population par unité de temps et pour aussi n’importe quelle espèce (animale ou végétale, par exemple). Elle se décompose en deux parties distinctes : l’accroissement naturel ; le solde migratoire.
Résidu (statistiques)In statistics and optimization, errors and residuals are two closely related and easily confused measures of the deviation of an observed value of an element of a statistical sample from its "true value" (not necessarily observable). The error of an observation is the deviation of the observed value from the true value of a quantity of interest (for example, a population mean). The residual is the difference between the observed value and the estimated value of the quantity of interest (for example, a sample mean).
Maximum weight matchingIn computer science and graph theory, the maximum weight matching problem is the problem of finding, in a weighted graph, a matching in which the sum of weights is maximized. A special case of it is the assignment problem, in which the input is restricted to be a bipartite graph, and the matching constrained to be have cardinality that of the smaller of the two partitions. Another special case is the problem of finding a maximum cardinality matching on an unweighted graph: this corresponds to the case where all edge weights are the same.
Couplage (théorie des graphes)En théorie des graphes, un couplage ou appariement (en anglais matching) d'un graphe est un ensemble d'arêtes de ce graphe qui n'ont pas de sommets en commun. Soit un graphe simple non orienté G = (S, A) (où S est l'ensemble des sommets et A l'ensemble des arêtes, qui sont certaines paires de sommets), un couplage M est un ensemble d'arêtes deux à deux non adjacentes. C'est-à-dire que M est une partie de l'ensemble A des arêtes telle que Un couplage maximum est un couplage contenant le plus grand nombre possible d'arêtes.
Graphe birégulierDans la théorie des graphes, un graphe birégulier est un graphe biparti dans lequel tous les sommets de chacune des deux parties du graphe ont le même degré. Notons et les deux parties d'un graphe birégulier. Si le degré des sommets de est et si le degré des sommets de est , le graphe est dit -birégulier. vignette|Le graphe biparti complet est -birégulier. Tout graphe biparti complet (figure) est -birégulier. vignette|gauche|Le graphe du dodécaèdre rhombique est birégulier. Le graphe du dodécaèdre rhombique (figure) est -birégulier.
Population mondialeLa population mondiale est le nombre d'êtres humains vivant sur Terre à un instant donné. L’ONU l'estime à le . Elle avait été estimée à pour 2000, entre 1,55 et pour 1900, entre 0,813 et pour 1800 et entre 600 et d'habitants pour 1700. Cette augmentation de la population avec le temps tend cependant à ralentir avec une baisse mondiale de l'indice de fécondité, plus ou moins importante selon les pays. Le taux annuel de la croissance démographique de la population mondiale est tombé de 2,1 % au début des années 1960 à moins de 1 % en 2020.
Loi normale multidimensionnelleEn théorie des probabilités, on appelle loi normale multidimensionnelle, ou normale multivariée ou loi multinormale ou loi de Gauss à plusieurs variables, la loi de probabilité qui est la généralisation multidimensionnelle de la loi normale. gauche|vignette|Différentes densités de lois normales en un dimension. gauche|vignette|Densité d'une loi gaussienne en 2D. Une loi normale classique est une loi dite « en cloche » en une dimension.
Problème de flot maximumthumb|right|Un exemple de graphe de flot avec un flot maximum. la source est , et le puits . Les nombres indiquent le flot et la capacité. Le problème de flot maximum consiste à trouver, dans un réseau de flot, un flot réalisable depuis une source unique et vers un puits unique qui soit maximum. Quelquefois, on ne s'intéresse qu'à la valeur de ce flot. Le s-t flot maximum (depuis la source s vers le puits t) est égal à la s-t coupe minimum du graphe, comme l'indique le théorème flot-max/coupe-min.
Graphe biparti completEn théorie des graphes, un graphe est dit biparti complet (ou encore est appelé une biclique) s'il est biparti et chaque sommet du premier ensemble est relié à tous les sommets du second ensemble. Plus précisément, il existe une partition de son ensemble de sommets en deux sous-ensembles et telle que chaque sommet de est relié à chaque sommet de . Si le premier ensemble est de cardinal m et le second ensemble est de cardinal n, le graphe biparti complet est noté . Si m = 1, le graphe complet biparti K1,n est une étoile et est noté .