Algorithme de colonies de fourmisLes algorithmes de colonies de fourmis (, ou ACO) sont des algorithmes inspirés du comportement des fourmis, ou d'autres espèces formant un superorganisme, et qui constituent une famille de métaheuristiques d’optimisation. Initialement proposé par Marco Dorigo dans les années 1990, pour la recherche de chemins optimaux dans un graphe, le premier algorithme s’inspire du comportement des fourmis recherchant un chemin entre leur colonie et une source de nourriture.
Cartographie et localisation simultanéesvignette|Une carte générée par le robot Darmstadt. La localisation et cartographie simultanées, connue en anglais sous le nom de SLAM (simultaneous localization and mapping) ou CML (concurrent mapping and localization), consiste, pour un robot ou véhicule autonome, à simultanément construire ou améliorer une carte de son environnement et de s’y localiser. La plupart des robots industriels sont fixes et effectuent des tâches dans un environnement connu.
Algorithme génétiqueLes algorithmes génétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode exacte (ou que la solution est inconnue) pour le résoudre en un temps raisonnable. Les algorithmes génétiques utilisent la notion de sélection naturelle et l'appliquent à une population de solutions potentielles au problème donné.
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Optimisation multiobjectifL'optimisation multiobjectif (appelée aussi Programmation multi-objective ou optimisation multi-critère) est une branche de l'optimisation mathématique traitant spécifiquement des problèmes d'optimisation ayant plusieurs fonctions objectifs. Elle se distingue de l'optimisation multidisciplinaire par le fait que les objectifs à optimiser portent ici sur un seul problème. Les problèmes multiobjectifs ont un intérêt grandissant dans l'industrie où les responsables sont contraints de tenter d'optimiser des objectifs contradictoires.
Algorithme d'approximationEn informatique théorique, un algorithme d'approximation est une méthode permettant de calculer une solution approchée à un problème algorithmique d'optimisation. Plus précisément, c'est une heuristique garantissant à la qualité de la solution qui fournit un rapport inférieur (si l'on minimise) à une constante, par rapport à la qualité optimale d'une solution, pour toutes les instances possibles du problème.
Open sourceOpen source is source code that is made freely available for possible modification and redistribution. Products include permission to use the source code, design documents, or content of the product. The open-source model is a decentralized software development model that encourages open collaboration. A main principle of open-source software development is peer production, with products such as source code, blueprints, and documentation freely available to the public.
Optimisation multidisciplinaireL'Optimisation de Conception Multidisciplinaire (OMD ou MDO, Multidisciplinary Design Optimisation, en anglais) est un domaine d'ingénierie qui utilise des méthodes d'optimisation afin de résoudre des problèmes de conception mettant en œuvre plusieurs disciplines. La MDO permet aux concepteurs d'incorporer les effets de chacune des disciplines en même temps. L'optimum global ainsi trouvé est meilleur que la configuration trouvée en optimisant chaque discipline indépendamment des autres, car l'on prend en compte les interactions entre les disciplines.
Algorithmethumb|Algorithme de découpe d'un polygone quelconque en triangles (triangulation). Un algorithme est une suite finie et non ambiguë d'instructions et d’opérations permettant de résoudre une classe de problèmes. Le domaine qui étudie les algorithmes est appelé l'algorithmique. On retrouve aujourd'hui des algorithmes dans de nombreuses applications telles que le fonctionnement des ordinateurs, la cryptographie, le routage d'informations, la planification et l'utilisation optimale des ressources, le , le traitement de textes, la bio-informatique L' algorithme peut être mis en forme de façon graphique dans un algorigramme ou organigramme de programmation.
Ensemble convexeUn objet géométrique est dit convexe lorsque, chaque fois qu'on y prend deux points et , le segment qui les joint y est entièrement contenu. Ainsi un cube plein, un disque ou une boule sont convexes, mais un objet creux ou bosselé ne l'est pas. On suppose travailler dans un contexte où le segment reliant deux points quelconques et a un sens (par exemple dans un espace affine sur R — en particulier dans un espace affine sur C — ou dans un ).