Publication

A new representation for multivariate tail probabilities

Résumé

Existing theory for multivariate extreme values focuses upon characterizations of the distributional tails when all components of a random vector, standardized to identical margins, grow at the same rate. In this paper, we consider the effect of allowing the components to grow at different rates, and characterize the link between these marginal growth rates and the multivariate tail probability decay rate. Our approach leads to a whole class of univariate regular variation conditions, in place of the single but multivariate regular variation conditions that underpin the current theories. These conditions are indexed by a homogeneous function and an angular dependence function, which, for asymptotically independent random vectors, mirror the role played by the exponent measure and Pickands' dependence function in classical multivariate extremes. We additionally offer an inferential approach to joint survivor probability estimation. The key feature of our methodology is that extreme set probabilities can be estimated by extrapolating upon rays emanating from the origin when the margins of the variables are exponential. This offers an appreciable improvement over existing techniques where extrapolation in exponential margins is upon lines parallel to the diagonal.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.