Cartographie et localisation simultanéesvignette|Une carte générée par le robot Darmstadt. La localisation et cartographie simultanées, connue en anglais sous le nom de SLAM (simultaneous localization and mapping) ou CML (concurrent mapping and localization), consiste, pour un robot ou véhicule autonome, à simultanément construire ou améliorer une carte de son environnement et de s’y localiser. La plupart des robots industriels sont fixes et effectuent des tâches dans un environnement connu.
Algorithme du gradientLalgorithme du gradient, aussi appelé algorithme de descente de gradient, désigne un algorithme d'optimisation différentiable. Il est par conséquent destiné à minimiser une fonction réelle différentiable définie sur un espace euclidien (par exemple, , l'espace des n-uplets de nombres réels, muni d'un produit scalaire) ou, plus généralement, sur un espace hilbertien. L'algorithme est itératif et procède donc par améliorations successives. Au point courant, un déplacement est effectué dans la direction opposée au gradient, de manière à faire décroître la fonction.
Assimilation de donnéesEn météorologie, l'assimilation de données est le procédé qui consiste à corriger, à l'aide d'observations, l'état de l'atmosphère d'une prévision météorologique. La prévision numérique de l'évolution de l'atmosphère dépend grandement des conditions initiales qui lui sont fournies. Or il est difficile de déterminer, à un instant donné, l'état de l'atmosphère, c’est-à-dire l’ensemble des variables atmosphériques (pression, température, humidité, etc.) sur l’ensemble du volume, avec une bonne résolution et une bonne précision.
Observateur d'étatEn automatique et en théorie de l'information, un observateur d'état est une extension d'un modèle représenté sous forme de représentation d'état. Lorsque l'état d'un système n'est pas mesurable, on conçoit un observateur qui permet de reconstruire l'état à partir d'un modèle du système dynamique et des mesures d'autres grandeurs. La théorie de l' observateur d'état a tout d'abord été introduite par Kalman et Bucy pour un système linéaire dans un environnement stochastique (Filtre de Kalman-Bucy).
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Algorithme du gradient stochastiqueL'algorithme du gradient stochastique est une méthode de descente de gradient (itérative) utilisée pour la minimisation d'une fonction objectif qui est écrite comme une somme de fonctions différentiables. À la fois l'estimation statistique et l'apprentissage automatique s'intéressent au problème de la minimisation d'une fonction objectif qui a la forme d'une somme : où le paramètre qui minimise doit être estimé. Chacune des fonctions est généralement associée avec la -ème observation de l'ensemble des données (utilisées pour l'apprentissage).
Espace de SobolevEn analyse mathématique, les espaces de Sobolev sont des espaces fonctionnels particulièrement adaptés à la résolution des problèmes d'équation aux dérivées partielles. Ils doivent leur nom au mathématicien russe Sergueï Lvovitch Sobolev. Plus précisément, un espace de Sobolev est un espace vectoriel de fonctions muni de la norme obtenue par la combinaison de la norme L de la fonction elle-même et de ses dérivées jusqu'à un certain ordre. Les dérivées sont comprises dans un sens faible, au sens des distributions afin de rendre l'espace complet.
Processus gaussienEn théorie des probabilités et en statistiques, un processus gaussien est un processus stochastique (une collection de variables aléatoires avec un index temporel ou spatial) de telle sorte que chaque collection finie de ces variables aléatoires suit une loi normale multidimensionnelle ; c'est-à-dire que chaque combinaison linéaire est normalement distribuée. La distribution d'un processus gaussien est la loi jointe de toutes ces variables aléatoires. Ses réalisations sont donc des fonctions avec un domaine continu.
Équation différentielle ordinaireEn mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.
Inférence bayésiennevignette|Illustration comparant les approches fréquentiste et bayésienne (Christophe Michel, 2018). L’inférence bayésienne est une méthode d'inférence statistique par laquelle on calcule les probabilités de diverses causes hypothétiques à partir de l'observation d'événements connus. Elle s'appuie principalement sur le théorème de Bayes. Le raisonnement bayésien construit, à partir d'observations, une probabilité de la cause d'un type d'événements.