Homeostatic plasticityIn neuroscience, homeostatic plasticity refers to the capacity of neurons to regulate their own excitability relative to network activity. The term homeostatic plasticity derives from two opposing concepts: 'homeostatic' (a product of the Greek words for 'same' and 'state' or 'condition') and plasticity (or 'change'), thus homeostatic plasticity means "staying the same through change". Homeostatic synaptic plasticity is a means of maintaining the synaptic basis for learning, respiration, and locomotion, in contrast to the Hebbian plasticity associated with learning and memory.
Règle de HebbLa règle de Hebb, théorie de Hebb, postulat de Hebb ou théorie des assemblées de neurones a été établie par Donald Hebb en 1949. Elle est à la fois utilisée comme hypothèse en neurosciences et comme concept dans les réseaux neuronaux en mathématiques. En 1950, un manuscrit de Sigmund Freud datant de 1895 fut publié qui attestait que cette théorie avait déjà été formulée avant Hebb. Cette théorie est souvent résumée par la formule : () C'est une règle d'apprentissage des réseaux de neurones artificiels dans le contexte de l'étude d'assemblées de neurones.
Plasticité synaptiqueLa plasticité synaptique, en neurosciences, désigne la capacité des synapses à moduler, à la suite d'un événement particulier - une augmentation ou une diminution ponctuelle et significative de leur activité - l'efficacité de la transmission du signal électrique d'un neurone à l'autre et à conserver, à plus ou moins long terme, une "trace" de cette modulation. De manière schématique, l'efficacité de la transmission synaptique, voire la synapse elle-même, est maintenue et modulée par l'usage qui en est fait.
Plasticité fonction du temps d'occurrence des impulsionsLa (en Spike-timing-dependent plasticity, STDP) est un processus de modification du poids des synapses. Cette modification dépend du moment de déclenchement du potentiel d'action dans les neurones pré- et post-synaptique. Ce processus permettrait d'expliquer partiellement le développement cérébral et la mémorisation, en provoquant potentialisation à long terme (en Long-term potentiation, LTP) et dépression à long terme (en Long-term depression, LTD) des synapses.
Plasticité neuronalevignette|Effets schématiques de la neuroplasticité après entraînement Plasticité neuronale, neuroplasticité ou encore plasticité cérébrale sont des termes génériques qui décrivent les mécanismes par lesquels le cerveau est capable de se modifier lors des processus de neurogenèse dès la phase embryonnaire ou lors d'apprentissages. Elle s’exprime par la capacité du cerveau de créer, défaire ou réorganiser les réseaux de neurones et les connexions de ces neurones. Le cerveau est ainsi qualifié de « plastique » ou de « malléable ».
Potentialisation à long termevignette|300x300px|La potentialisation à Long terme (PLT) est une augmentation persistante de la force synaptique après stimulation à haute fréquence d'une synapse chimique. Des études de la PLT sont souvent réalisées dans des parties de l'hippocampe, un organe important pour l'apprentissage et la mémoire. Dans ces études, les enregistrements électriques sont obtenus à partir de cellules et tracés dans un graphique comme celui-ci. Ce graphique compare la réponse à des stimuli au niveau des synapses qui ont subi PLT contre les synapses qui n'ont pas subi la PLT.
Réseau de neurones récurrentsUn réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
Rétroactionvignette|Représentation d'une boucle de rétroaction. La rétroaction (en anglais feedback) est un processus dans lequel un effet intervient aussi comme agent causal sur sa propre origine, la séquence des expressions de la cause principale et des effets successifs formant une boucle de rétroaction. Une rétroaction est une interaction dans laquelle la perturbation d’une variable provoque le changement d'une seconde variable, qui influe à son tour sur la variable initiale. Une rétroaction forme une boucle fermée dans un diagramme de causalité.