Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this paper, we consider nonlinear Schrodinger equations of the following type: -Delta u(x) + V (x) u(x) -q(x)|u(x)|sigma u(x) =lambda u(x), x is an element of R-N, u is an element of H-1(R-N) \ {0}, where N >= 2 and sigma > 0. We concentrate on situations where the potential function V appearing in the linear part of the equation is of Coulomb type; by this we mean potentials where the spectrum of the linear operator -Delta + V consists of an increasing sequence of eigenvalues lambda(1), lambda(2), followed by an interval belonging to the essential spectrum. We study, for lambda kept fixed inside a spectral gap or below lambda(1), the existence of multiple solution pairs, as well as the bifurcation behaviour of these solutions when lambda approaches a point of the spectrum from the left-hand side. Our method proceeds by an analysis of critical points of the corresponding energy functional. To this end, we derive a new variational characterization of critical levels c(0)(lambda)
Hoài-Minh Nguyên, Jean Louis-Alexandre Fornerod
,