Processus adiabatiquevignette|250px|Récipient aux parois adiabatiques : le vase de Dewar. En thermodynamique, un processus adiabatique est une transformation effectuée sans qu'aucun transfert thermique n'intervienne entre le système étudié et son environnement, c'est-à-dire sans échange de chaleur entre les deux milieux. Le mot « adiabatique » a été construit à partir du grec (« infranchissable »), dérivé de , « traverser, franchir ». Un matériau adiabatique est imperméable à la chaleur.
Groupe symplectiqueEn mathématiques, le terme groupe symplectique est utilisé pour désigner deux familles différentes de groupes linéaires. On les note Sp(2n, K) et Sp(n), ce dernier étant parfois nommé groupe compact symplectique pour le distinguer du premier. Cette notation ne fait pas l’unanimité et certains auteurs en utilisent d’autres, différant généralement d’un facteur 2. La notation utilisée dans cet article est en rapport avec la taille des matrices représentant les groupes.
Paramètres SLes paramètres S (de l'anglais Scattering parameters), coefficients de diffraction ou de répartition sont utilisés en hyperfréquences, en électricité ou en électronique pour décrire le comportement électrique de réseaux électriques linéaires en fonction des signaux d'entrée. Ces paramètres font partie d'une famille de formalismes similaires, utilisés en électronique, en physique ou en optique : les paramètres Y, les paramètres Z, les paramètres H, les paramètres T ou les paramètres ABCD.
Impedance parametersImpedance parameters or Z-parameters (the elements of an impedance matrix or Z-matrix) are properties used in electrical engineering, electronic engineering, and communication systems engineering to describe the electrical behavior of linear electrical networks. They are also used to describe the small-signal (linearized) response of non-linear networks. They are members of a family of similar parameters used in electronic engineering, other examples being: S-parameters, Y-parameters, H-parameters, T-parameters or ABCD-parameters.
Phase géométriqueEn mécanique quantique, une phase géométrique est un nombre complexe de module unité par lequel est multiplié le vecteur d'état (ou la fonction d'onde) d'un système physique dont on a fait varier un paramètre de façon « adiabatique » selon un circuit fermé (dans l'espace des paramètres). La phase de -Berry est un exemple de telle phase géométrique. Un phénomène analogue existe en optique classique pour la polarisation de la lumière. Fonction d'onde Espace fibré Holonomie Michael V.
Indice adiabatiqueEn thermodynamique, l'indice adiabatique d'un gaz (corps pur ou mélange), aussi appelé coefficient adiabatique, exposant adiabatique ou coefficient de Laplace, noté , est défini comme le rapport de ses capacités thermiques à pression constante (isobare) et à volume constant (isochore) : Le coefficient de Laplace se définit également à partir des capacités thermiques molaires et si la transformation concerne moles de gaz, ou des capacités thermiques massiques (ou spécifiques) et si la transformation concerne
Opérateur d'évolutionEn mécanique quantique, l'opérateur d'évolution est l'opérateur qui transforme l'état quantique au temps en l'état quantique au temps résultant de l'évolution du système sous l'effet de l'opérateur hamiltonien. On considère un hamiltonien composé de deux termes : où la dépendance temporelle est contenue dans . Quand , le système est complètement connu par ses kets propres et ses valeurs propres : Cet opérateur est noté et on a la relation, qui donne l'état du système au temps à partir du temps initial : où représente le ket au temps représente le ket au temps Pour le bra, on a alors la relation suivante : L'opérateur a les propriétés suivantes : C'est un opérateur linéaire est un opérateur unitaire ().
Loi de Kleibervignette|400px|Figure 1. Taille en fonction du métabolisme pour différentes especes. Graphique original de Kleiber (1947). La loi de Kleiber, formulée par le biologiste au début des années 1930, énonce que pour la majorité des vertébrés supérieurs, le métabolisme est proportionnel à la masse corporelle élevée à la puissance 3⁄4. Algébriquement, si l'on convient de noter q0 le métabolisme et M la masse corporelle de l'animal, q04 ~ M3. Ainsi, puisqu'un chat est 100 fois plus lourd qu'une souris, son métabolisme est environ 32 fois plus consommateur d'énergie.
Système intégrableEn mécanique hamiltonienne, un système intégrable au sens de Liouville est un système qui possède un nombre suffisant de indépendantes. Lorsque le mouvement est borné, la dynamique est alors périodique ou quasi périodique. Soit un système à N degrés de liberté qui est décrit à l'instant par : les N coordonnées généralisées les N moments conjugués . À chaque instant, les 2N coordonnées définissent un point dans l'espace des phases Γ = R2N. L'évolution dynamique du système sous le flot hamiltonien se traduit par une courbe continue appelée orbite dans cet espace des phases.
AllométrieEn biologie du développement des organismes, l’allométrie est le fait que des organes, tissus ou processus croissent à des vitesses différentes. On présuppose que ces phénomènes de croissance sont régis par des lois mathématiques que l'on peut découvrir. Le terme allométrie (« allo » vient du grec allos = « autres », donc dans ce cas « autre que métrique », c’est-à-dire non linéaire) a été repris en 1936 par Julian Huxley et Georges Teissier en tant que désignation conventionnelle, en biologie, des phénomènes de croissance différentielle d'organes, dans la mesure où ils tombent sous une loi de forme mathématique spécifiée.