Differentiable curveDifferential geometry of curves is the branch of geometry that deals with smooth curves in the plane and the Euclidean space by methods of differential and integral calculus. Many specific curves have been thoroughly investigated using the synthetic approach. Differential geometry takes another path: curves are represented in a parametrized form, and their geometric properties and various quantities associated with them, such as the curvature and the arc length, are expressed via derivatives and integrals using vector calculus.
Geodesics on an ellipsoidThe study of geodesics on an ellipsoid arose in connection with geodesy specifically with the solution of triangulation networks. The figure of the Earth is well approximated by an oblate ellipsoid, a slightly flattened sphere. A geodesic is the shortest path between two points on a curved surface, analogous to a straight line on a plane surface. The solution of a triangulation network on an ellipsoid is therefore a set of exercises in spheroidal trigonometry .
Geodesics in general relativityIn general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic. In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress–energy tensor (representing matter, for instance).
Immersion (mathématiques)En géométrie différentielle, une immersion est une application différentiable d'une variété différentielle dans une autre, dont la différentielle en tout point est injective. Soient V et W deux variétés et f une application différentiable de V dans W. On dit que f est une immersion si pour tout x appartenant à V, le rang de l'application linéaire tangente Tf(x) est égal à la dimension de V. On la différencie : de la submersion (le rang de Tf(x) est égal à la dimension de W) ; du plongement (en plus d'être une immersion, f est un homéomorphisme de V sur f(V)).