Point rationnelEn théorie des nombres et géométrie algébrique, les points rationnels d'une variété algébrique définie sur un corps sont, lorsque X est définie par un système d'équations polynomiales, les solutions dans k de ce système. Soit une variété algébrique définie sur un corps . Un point est appelé un point rationnel si le corps résiduel de X en x est égal à . Cela revient à dire que les coordonnées du point dans une carte locale affine appartiennent toutes à .
List of complex and algebraic surfacesThis is a list of named algebraic surfaces, compact complex surfaces, and families thereof, sorted according to their Kodaira dimension following Enriques–Kodaira classification. Projective plane Cone (geometry) Cylinder Ellipsoid Hyperboloid Paraboloid Sphere Spheroid Cayley nodal cubic surface, a certain cubic surface with 4 nodes Cayley's ruled cubic surface Clebsch surface or Klein icosahedral surface Fermat cubic Monkey saddle Parabolic conoid Plücker's conoid Whitney umbrella Châtelet surfaces Dupin
Del Pezzo surfaceIn mathematics, a del Pezzo surface or Fano surface is a two-dimensional Fano variety, in other words a non-singular projective algebraic surface with ample anticanonical divisor class. They are in some sense the opposite of surfaces of general type, whose canonical class is big. They are named for Pasquale del Pezzo who studied the surfaces with the more restrictive condition that they have a very ample anticanonical divisor class, or in his language the surfaces with a degree n embedding in n-dimensional projective space , which are the del Pezzo surfaces of degree at least 3.
Variété rationnelleEn géométrie algébrique, une variété rationnelle est une variété algébrique (intègre) V sur un corps K qui est birationnelle à un espace projectif sur K, c'est-à-dire qu'un certain ouvert dense de V est isomorphe à un ouvert d'un espace projectif. De façon équivalente, cela signifie que son corps de fonctions est isomorphe au corps des fractions rationnelles à d indéterminées K(U, ... , U), l'entier d étant alors égal à la dimension de la variété. Soit V une variété algébrique affine de dimension d définie par un idéal premier ⟨f, .
Surface rationnelleEn géométrie algébrique, une branche des mathématiques, une surface rationnelle est une surface birationnellement équivalente à un plan projectif, ou en d'autres termes, une variété rationnelle de dimension deux. Chaque surface rationnelle non-singulière peut être obtenue après plusieurs éclatements d'une surface rationnelle minimale. Les surfaces rationnelles minimales sont des surfaces de Hirzebruch Σr pour r = 0 ou r ≥ 2. Diamant de Hodge où n est égal à 0 pour le plan projectif, 1 pour les surfaces de Hirzebruch et supérieur à 1 pour les autres surfaces rationnelles.
Surface cubiqueEn géométrie algébrique, une surface cubique est une variété algébrique surfacique. C'est donc une surface définie par un polynôme homogène de degré 3, dans l'espace projectif . On peut prendre par exemple égal à ou . Un résultat remarquable et non trivial de la géométrie algébrique est que dans le cas où la surface est non singulière (c'est-à-dire telle qu'en tout point de la surface au moins l'une des dérivées partielles du polynôme ne s'annule pas), on peut démontrer que si le corps de base est le corps des nombres complexes alors il y a exactement 27 droites sur cette surface cubique.
Canonical bundleIn mathematics, the canonical bundle of a non-singular algebraic variety of dimension over a field is the line bundle , which is the nth exterior power of the cotangent bundle on . Over the complex numbers, it is the determinant bundle of the holomorphic cotangent bundle . Equivalently, it is the line bundle of holomorphic n-forms on . This is the dualising object for Serre duality on . It may equally well be considered as an invertible sheaf.
K3 (géométrie)En géométrie différentielle ou algébrique, les surfaces K3 sont les variétés de Calabi-Yau de plus petite dimension différentes des tores. Ce sont des variétés complexes de dimension complexe 2 compactes et kählériennes. Les surfaces K3 possèdent en outre la propriété d'être les seules variétés de Calabi-Yau distincte du 4-tore T d'un point de vue topologique ou différentiel. Cependant, en tant que variété complexe, il y a un nombre infini de surfaces K3 non isomorphes. On peut notamment les distinguer par le biais du .
Rational normal curveIn mathematics, the rational normal curve is a smooth, rational curve C of degree n in projective n-space Pn. It is a simple example of a projective variety; formally, it is the Veronese variety when the domain is the projective line. For n = 2 it is the plane conic Z0Z2 = Z, and for n = 3 it is the twisted cubic. The term "normal" refers to projective normality, not normal schemes. The intersection of the rational normal curve with an affine space is called the moment curve.
Grade universitaireUn grade universitaire est un degré dans la hiérarchie des études supérieures. Il est attesté par un diplôme délivré par les universités et autres institutions d’études supérieures. Les grades sont conférés aux titulaires de diplômes de l'enseignement supérieur délivrés par les universités et les établissements habilités. Les grades peuvent être également conférés aux titulaires de certains diplômes propres à des établissements. À ces grades peuvent être associés un certain nombre de droits et de privilèges, pouvant varier suivant les disciplines et les finalités.