Méthode de BartlettEn estimation spectrale, la méthode de Bartlett fournit un estimateur consistant de la densité spectrale de puissance. En pratique, obtenir un signal sur une durée infinie et l'acquérir sans bruit est impossible. C'est pourquoi on peut utiliser la fenêtre de Bartlett dans le but de lisser un périodogramme. Cette méthode est utilisée en physique, en ingénierie ainsi qu'en mathématiques appliquées. Les applications courantes de cette méthode sont l'analyse en réponse fréquentielle ainsi que l'analyse spectrale générale.
Vecteur Autoregressif (VAR)Le modèle à Vecteur Autoregressif (VAR) est un modèle économique qui permet de capturer les interdépendances entre plusieurs séries temporelles. Il s'agit de la principale catégorie de modèle statistique. Dans un modèle VAR, les variables sont traitées symétriquement de manière que chacune d'entre elles soit expliquée par ses propres valeurs passées et par les valeurs passées des autres variables. De ce fait, les modèles VAR mobilisent des bases de données importantes.
Singular spectrum analysisIn time series analysis, singular spectrum analysis (SSA) is a nonparametric spectral estimation method. It combines elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. Its roots lie in the classical Karhunen (1946)–Loève (1945, 1978) spectral decomposition of time series and random fields and in the Mañé (1981)–Takens (1981) embedding theorem. SSA can be an aid in the decomposition of time series into a sum of components, each having a meaningful interpretation.
Transition de phasevignette|droite|Noms exclusifs des transitions de phase en thermodynamique. En physique, une transition de phase est la transformation physique d'un système d'une phase vers une autre, induite par la variation d'un paramètre de contrôle externe (température, champ magnétique...). Une telle transition se produit lorsque ce paramètre externe atteint une valeur seuil (ou valeur « critique »). La transformation traduit généralement un changement des propriétés de symétrie du système.
Pente (mathématiques)En mathématiques, la pente d'une droite, son coefficient angulaire ou encore son coefficient directeur, est un nombre qui permet de décrire à la fois le sens de l'inclinaison de la droite (si la droite monte quand on la parcourt de la gauche vers la droite, le nombre est positif, si la droite descend, le nombre est négatif) et la force de celle-ci (plus le nombre est grand en valeur absolue, plus la pente est forte). En géométrie cartésienne, le coefficient directeur d'une droite, non parallèle au deuxième axe de coordonnées, désigne le coefficient de l'équation de la droite, .
Diagramme de phaseUn diagramme de phase, ou diagramme de phases, est une représentation graphique utilisée en thermodynamique, généralement à deux ou trois dimensions, représentant les domaines de l'état physique (ou phase) d'un système (corps pur ou mélange de corps purs), en fonction de variables, choisies pour faciliter la compréhension des phénomènes étudiés. Les diagrammes les plus simples concernent un corps pur avec pour variables la température et la pression ; les autres variables souvent utilisées sont l'enthalpie, l'entropie, le volume massique, ainsi que la concentration en masse ou en volume d'un des corps purs constituant un mélange.
Traitement numérique du signalLe traitement numérique du signal étudie les techniques de traitement (filtrage, compression, etc), d'analyse et d'interprétation des signaux numérisés. À la différence du traitement des signaux analogiques qui est réalisé par des dispositifs en électronique analogique, le traitement des signaux numériques est réalisé par des machines numériques (des ordinateurs ou des circuits dédiés). Ces machines numériques donnent accès à des algorithmes puissants, tel le calcul de la transformée de Fourier.
Équation linéaireUne équation à coefficients réels ou complexes est dite linéaire quand elle peut être présentée sous la forme ax = b ou, de manière équivalente ax – b = 0, où x est l'inconnue, a et b sont deux nombres donnés. Si a est différent de zéro, la seule solution est le nombre x = b/a. Plus généralement, une équation est dite linéaire lorsqu'elle se présente sous la forme u(x) = b, où u est une application linéaire entre deux espaces vectoriels E et F, b étant un vecteur donné de F. On recherche l'inconnue x dans E.