HyperboloïdeUn hyperboloïde est en géométrie une surface du second degré de l'espace euclidien. Il fait donc partie des quadriques, avec pour caractéristique principale de posséder un centre de symétrie et de s'étendre à l'infini. Les sections non triviales d'un hyperboloïde avec un plan sont des paraboles, des ellipses ou des hyperboles. On distingue deux types d'hyperboloïdes, connexes ou non, chaque partie connexe s'appelant une nappe. Le cône peut être vu comme une forme dégénérée d'hyperboloïde.
Gravure (microfabrication)La gravure (aussi appelée parfois par son nom anglophone, etching) est un procédé utilisée en microfabrication, qui consiste à retirer une ou plusieurs couches de matériaux à la surface d'un wafer. La gravure est une étape critique, extrêmement importante, lors de la fabrication d'éléments de microélectronique, chaque wafer pouvant subir de nombreuses étapes de gravure. Pour chaque étape de gravure, une partie du wafer est protégée de la gravure par une couche protectrice qui résiste à cette gravure.
OrthotropieL’orthotropie désigne des caractéristiques de symétrie d'un corps, d'une grandeur ou d'un phénomène. Ce terme est utilisé dans plusieurs domaines avec des définitions différentes. L’orthotropie désigne des caractéristiques de symétrie d'un matériau. C’est un cas particulier d’anisotropie. On distingue deux types d'orthotropie : un matériau est orthotrope s'il possède trois plans de symétrie orthogonaux entre eux. Son comportement élastique est alors défini par neuf modules d'élasticité, son comportement thermique par trois constantes thermiques.
CoquaternionEn mathématiques et en algèbre abstraite, un coquaternion est une idée mise en avant par James Cockle en 1849. Comme les quaternions de Hamilton inventés en 1843, ils forment un espace vectoriel réel à quatre dimensions muni d'une opération multiplicative. À la différence de l'algèbre des quaternions, les coquaternions peuvent avoir des diviseurs de zéro, des éléments idempotents ou nilpotents. L'ensemble forme une base. Les produits de coquaternion de ces éléments sont Avec ces produits l'ensemble est isomorphe au groupe diédral d'un carré.
IsotropieL'isotropie caractérise l’invariance des propriétés physiques d’un milieu en fonction de la direction. Elle qualifie une propriété d'un milieu, ou le milieu directement, la propriété concernée étant sous-entendue. L'isotropie est significative pour une grandeur portée par un vecteur, comme la vitesse ; une grandeur scalaire ne dépend pas d'une direction et est par nature isotrope. Le contraire de l’isotropie est l’anisotropie. Le mot isotrope dérive des termes grecs isos (ἴσος, "égal") et tropos (τρόπος, "conduite, manière").