Taux d'erreurLe taux d'erreur ou B.E.R., abréviation de l'expression anglaise Bit Error Rate, désigne une valeur, relative au taux d'erreur, mesurée à la réception d'une transmission numérique, relative au niveau d'atténuation et/ou de perturbation d'un signal transmis. Ce phénomène survient également lors de l'échantillonnage (numérisation), lors de la lecture et de la sauvegarde des données (CD-R, DVD-R, disque dur, RAM...). Ce taux détermine le nombre d'erreurs apparues entre la modulation et juste après la démodulation du signal.
Loi de puissanceLa loi de puissance est une relation mathématique entre deux quantités. Si une quantité est la fréquence d'un évènement et l'autre est la taille d'un évènement, alors la relation est une distribution de la loi de puissance si les fréquences diminuent très lentement lorsque la taille de l'évènement augmente. En science, une loi de puissance est une relation entre deux quantités x et y qui peut s'écrire de la façon suivante : où a est une constante dite constante de proportionnalité, k, valeur négative, est une autre constante, dite exposant, puissance, indice ou encore degré de la loi et x nombre réel strictement positif.
Automate fini alternantEn informatique théorique, et notamment en théorie des automates, un automate fini alternant est une extension des automates finis. Dans un automate fini non déterministe usuel, un mot est accepté si, parmi les états atteints, il y a au moins un état final. Dans automate fini alternant, c'est la valeur d'une fonction booléenne sur les états atteints qui définit la condition d'acceptation.
Automate fini non déterministeUn automate fini (on dit parfois, par une traduction littérale de l'anglais, machine à états finis, au lieu de machine avec un nombre fini d'états ou machine à états finie ou machine finie à états), finite-state automaton ou finite-state machine (FSA, FSM), est une machine abstraite qui est un outil fondamental en mathématiques discrètes et en informatique. On les retrouve dans la modélisation de processus, le contrôle, les protocoles de communication, la vérification de programmes, la théorie de la calculabilité, dans l'étude des langages formels et en compilation.
Probabilité conditionnellevignette|Illustration des probabilités conditionnelles avec un diagramme d'Euler. On a la probabilité a priori et les probabilités conditionnelles , et .|320x320px En théorie des probabilités, une probabilité conditionnelle est la probabilité d'un événement sachant qu'un autre événement a eu lieu. Par exemple, si une carte d'un jeu est tirée au hasard, on estime qu'il y a une chance sur quatre d'obtenir un cœur ; mais si on aperçoit un reflet rouge sur la table, il y a maintenant une chance sur deux d'obtenir un cœur.
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Exposant critiqueLors d'une transition de phase de deuxième ordre, au voisinage du point critique, les systèmes physiques ont des comportements universels en lois de puissances caractérisées par des exposants critiques. Au point critique, un fluide est caractérisé par une température critique et une densité critique . Pour une température légèrement supérieure à (à nombre de particules et volume constants), le système est homogène avec une densité . Pour une température légèrement inférieure à , il y a une séparation de phase entre une phase liquide (de densité ) et une phase gazeuse (de densité ).
Distance de HellingerEn Théorie des probabilités, pour toutes mesures de probabilités et absolument continues par rapport à une troisième mesure , le carré de la distance de Hellinger entre et est donné par : où et désignent respectivement les dérivées de Radon-Nykodym de et . Cette définition ne dépend pas de , si bien que la distance de Hellinger entre et ne change pas si est remplacée par une autre mesure de probabilité par rapport à laquelle et soient absolument continues.
Langage rationnelEn théorie des langages, les langages rationnels ou langages réguliers ou encore langages reconnaissables peuvent être décrits de plusieurs façons équivalentes : ce sont les langages décrits par les expressions régulières ou rationnelles, d'où le nom de langages réguliers ; ce sont les langages obtenus, à partir des lettres et de l'ensemble vide, par les opérations rationnelles, à savoir l'union, le produit et l'étoile de Kleene, d'où le nom de langages rationnels ; ce sont les langages reconnus par des auto
Information quantiqueLa théorie de l'information quantique, parfois abrégée simplement en information quantique, est un développement de la théorie de l'information de Claude Shannon exploitant les propriétés de la mécanique quantique, notamment le principe de superposition ou encore l'intrication. L'unité qui est utilisée pour quantifier l'information quantique est le qubit, par analogie avec le bit d'information classique.