Biologie structuralevignette|droite|Structure 3D de la myoglobine du grand cachalot (PDB ID 1MBO), la première protéine dont la structure a été résolue par cristallographie aux rayons X par John Kendrew et al. en 1958. La biologie structurale est la branche de la biologie qui étudie la structure et l'organisation spatiale des macromolécules biologiques, principalement les protéines et les acides nucléiques.
Dynamique moléculaireLa dynamique moléculaire est une technique de simulation numérique permettant de modéliser l'évolution d'un système de particules au cours du temps. Elle est particulièrement utilisée en sciences des matériaux et pour l'étude des molécules organiques, des protéines, de la matière molle et des macromolécules. En pratique, la dynamique moléculaire consiste à simuler le mouvement d'un ensemble de quelques dizaines à quelques milliers de particules dans un certain environnement (température, pression, champ électromagnétique, conditions aux limites.
État cohérentvignette|300px|droite|Un oscillateur harmonique classique (A et B) et en mécanique quantique (C à H). Les figures C à H représentent les solutions de l'équation de Schrödinger pour un même potentiel. L'axe horizontal est la position, et l'axe vertical la partie réelle (en bleu) et imaginaire (en rouge) de la fonction d'onde. (C,D,E,F) sont les états stationnaires (états propres d'énergie), et (G,H) non stationnaires.
Défaut cristallinvignette|Défauts ponctuels vus au MET (a, atome de S substitué par Mo) et lacunes (b, atomes de S manquants). Echelle barre: 1 nm. Un 'défaut cristallin' est une interruption de la périodicité du cristal. La périodicité d'un cristal représente la répétition régulière des positions atomiques dans les trois directions de l'espace. Les motifs réguliers sont interrompus par des défauts cristallographiques. Ils peuvent être ponctuels (dimension 0), linéaires (dimension 1), planaires (dimension 2) ou volumiques (dimension 3).
Bioinformatique structuralevignette|262x262px| Structure tridimensionnelle d'une protéine La bioinformatique structurale est la branche de la bio-informatique liée à l'analyse et à la prédiction de la structure tridimensionnelle des macromolécules biologiques telles que les protéines, l'ARN et l'ADN. Elle traite des généralisations sur les structures tridimensionnelles des macromolécules, telles que les comparaisons des repliements globaux et des motifs locaux, les principes du repliement moléculaire, l'évolution, les interactions de liaison et les relations structure/fonction, en travaillant à la fois à partir de structures résolues expérimentalement et de modèles informatiques.
PhononEn physique, un phonon correspond à une excitation collective dans un arrangement périodique d'atomes constituant une structure cristalline ou amorphe. La déformation est élastique. L'onde qui se propage peut être assimilée à une quasi-particule. Ils permettent d'expliquer les propriétés physiques des solides : la capacité thermique ; la conductivité thermique ; la capacité à propager le son ; la dilatation thermique. Le concept de phonon a été créé par Igor Tamm en et le mot « phonon » (du grec ancien / phonê, la voix) a été inventé par Yakov Frenkel en .
Electron mobilityIn solid-state physics, the electron mobility characterises how quickly an electron can move through a metal or semiconductor when pulled by an electric field. There is an analogous quantity for holes, called hole mobility. The term carrier mobility refers in general to both electron and hole mobility. Electron and hole mobility are special cases of electrical mobility of charged particles in a fluid under an applied electric field. When an electric field E is applied across a piece of material, the electrons respond by moving with an average velocity called the drift velocity, .
Indices de Miller et indices de directionLes indices de Miller ou de Miller-Bravais sont une manière de désigner l'orientation des plans cristallins dans un cristal. On utilise des indices similaires pour désigner les directions dans un cristal, les indices de direction. Un cristal est un empilement ordonné d'atomes, d'ions ou de molécules, appelés ci-après « motifs ». La périodicité du motif est exprimée par un réseau constitué de nœuds qui représentent les sommets de la maille. Les arêtes de la maille élémentaire définissent les vecteurs de la base.
Microscopie électronique en transmissionvignette|upright=1.5|Principe de fonctionnement du microscope électronique en transmission. vignette|Un microscope électronique en transmission (1976). La microscopie électronique en transmission (MET, ou TEM pour l'anglais transmission electron microscopy) est une technique de microscopie où un faisceau d'électrons est « transmis » à travers un échantillon très mince. Les effets d'interaction entre les électrons et l'échantillon donnent naissance à une image, dont la résolution peut atteindre 0,08 nanomètre (voire ).
Modulation de largeur d'impulsionLa modulation de largeur d'impulsions (MLI ; en anglais : Pulse Width Modulation, soit PWM), est une technique couramment utilisée pour synthétiser des signaux pseudo analogiques à l'aide de circuits numériques (tout ou rien, 1 ou 0), ou plus généralement à états discrets. Elle sert à générer un signal pseudo analogique à partir d'un environnement numérique ou analogique pour permettre un traitement de ce signal par des composants en commutation (se comportant comme des interrupteurs ouverts ou fermés).