Kite typesKites are tethered flying objects which fly by using aerodynamic lift, requiring wind (or towing) for generation of airflow over the lifting surfaces. Various types of kites exist, depending on features such as material, shape, use, or operating skills,Wind required. Kites may fly in air, water, or other fluids such as gas and other liquid gaining lift through deflection of the supporting medium. Variations in design of tethering systems and lifting surfaces are regularly introduced, with lifting surfaces varying in stiffness from limp sheet material to fully solid material.
Cerf-volantvignette|Cerfs-volants gonflables, sans armature. vignette|Cerf-volant triangulaire. thumb|Cerf-volant en forme d'étoile, à Hockenheim en Allemagne. Un cerf-volant est un aérodyne assez léger pour être mu par les forces aérodynamiques, lancé et manœuvré depuis le sol à l'aide d'un ou plusieurs fils. Sa structure la plus commune se compose d'une pièce de toile ou de papier plus ou moins tendue sur une armature. thumb|left|Le Cerf-volant (Francisco de Goya, 1778, musée du Prado) Le mot « cerf-volant » (1669) viendrait de serp-volante, serpe étant un mot féminin en ancien français pour désigner un serpent.
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Énergie renouvelableLes énergies renouvelables (parfois abrégées EnR) proviennent de sources d'énergie dont le renouvellement naturel est assez rapide pour qu'elles puissent être considérées comme inépuisables à l'échelle du temps humain. Elles proviennent de phénomènes naturels cycliques ou constants induits par les astres : le Soleil essentiellement pour la chaleur et la lumière qu'il produit, mais aussi l'attraction de la Lune (marées) et la chaleur engendrée par la Terre (géothermie).
Global optimizationGlobal optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function . Given a possibly nonlinear and non-convex continuous function with the global minima and the set of all global minimizers in , the standard minimization problem can be given as that is, finding and a global minimizer in ; where is a (not necessarily convex) compact set defined by inequalities .
Maximum de vraisemblanceEn statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.
Maximum a posterioriL'estimateur du maximum a posteriori (MAP), tout comme la méthode du maximum de vraisemblance, est une méthode pouvant être utilisée afin d'estimer un certain nombre de paramètres inconnus, comme les paramètres d'une densité de probabilité, reliés à un échantillon donné. Cette méthode est très liée au maximum de vraisemblance mais en diffère toutefois par la possibilité de prendre en compte un a priori non uniforme sur les paramètres à estimer.
Optimisation combinatoireL’optimisation combinatoire, (sous-ensemble à nombre de solutions finies de l'optimisation discrète), est une branche de l'optimisation en mathématiques appliquées et en informatique, également liée à la recherche opérationnelle, l'algorithmique et la théorie de la complexité. Dans sa forme la plus générale, un problème d'optimisation combinatoire (sous-ensemble à nombre de solutions finies de l'optimisation discrète) consiste à trouver dans un ensemble discret un parmi les meilleurs sous-ensembles (ou solutions) réalisables, la notion de meilleure solution étant définie par une fonction objectif.
Power kiteA power kite or traction kite is a large kite designed to provide significant pull to the user. The two most common forms are the foil, and the leading edge inflatable. There are also other less common types of power kite including rigid-framed kites and soft single skin kites. There are several different control systems used with these kites which have two to five lines and a bar or handles. Foil kites consist of a number of cells with cloth ribs in each cell.
Programmation par contraintesLa programmation par contraintes (PPC, ou CP pour constraint programming en anglais) est un paradigme de programmation apparu dans les années 1970 et 1980 permettant de résoudre des problèmes combinatoires de grande taille tels que les problèmes de planification et d'ordonnancement. En programmation par contraintes, on sépare la partie modélisation à l'aide de problèmes de satisfaction de contraintes (ou CSP pour Constraint Satisfaction Problem), de la partie résolution dont la particularité réside dans l'utilisation active des contraintes du problème pour réduire la taille de l'espace des solutions à parcourir (on parle de propagation de contraintes).