Cadre ZachmanLe cadre Zachman est un cadre d'architecture d'entreprise qui permet d'une manière formelle et hautement structurée de définir le système d'information d'une entreprise. Il utilise un modèle de classification à deux dimensions basé sur : six interrogations de base : Quoi, Comment, Où, Qui, Quand, et Pourquoi (What, How, Where, Who, When, Why), qui croisent six types de modèles distincts qui se rapportent à des groupes de parties prenantes : Visionnaire, Propriétaire, Concepteur, Réalisateur, Sous-traitant et Exécutant (visionary, owner, designer, builder, implementer, worker) pour présenter une vue holistique de l'entreprise qui est modélisée.
Nombre réel calculablevignette|π est calculable avec un précision arbitraire alors que presque tous les nombres réels sont non calculables. En informatique et algorithmique, un nombre réel calculable est un réel pour lequel il existe un algorithme ou une machine de Turing permettant d'énumérer la suite de ses chiffres (éventuellement infinie), ou plus généralement des symboles de son écriture sous forme de chaîne de caractères. De manière plus générale, et équivalente, un nombre réel est calculable si on peut en calculer une approximation aussi précise que l'on veut, avec une précision connue.
Triangulation de DelaunayEn mathématiques et plus particulièrement en géométrie algorithmique, la triangulation de Delaunay d'un ensemble P de points du plan est une triangulation DT(P) telle qu'aucun point de P n'est à l'intérieur du cercle circonscrit d'un des triangles de DT(P). Les triangulations de Delaunay maximisent le plus petit angle de l'ensemble des angles des triangles, évitant ainsi les triangles « allongés ». Cette triangulation a été inventée par le mathématicien russe Boris Delaunay, dans un article publié en 1924.
Graphe d'une fonctionthumb|Représentation du graphe de la fonction . Le graphe d'une fonction f de E dans F est le sous-ensemble G de E×F formé par les couples d'éléments liés par la correspondance : Cet ensemble est appelé le graphe de f parce qu'il permet d'en donner une représentation graphique dans le cas usuel où E et F sont des ensembles de réels : en effet, on peut alors parfois représenter E et F sur deux axes sécants, chaque couple de G peut alors être représenté par un point dans le plan, muni d'un repère défini par les deux axes.
ComputabilityComputability is the ability to solve a problem in an effective manner. It is a key topic of the field of computability theory within mathematical logic and the theory of computation within computer science. The computability of a problem is closely linked to the existence of an algorithm to solve the problem. The most widely studied models of computability are the Turing-computable and μ-recursive functions, and the lambda calculus, all of which have computationally equivalent power.
Courbe implicitevignette|402x402px| Ovales de Cassini :(1) a = 1,1 , c=1 (au dessus),(2) a = c = 1 (au milieu),(3) a = 1, c = 1,05 (au dessous)|gauche En mathématiques, une courbe implicite (en coordonnées cartésiennes) est une courbe plane définie par une équation implicite reliant les deux coordonnées x et y d'un point de . Par exemple, le cercle unité est défini par l'équation implicite . Dans le cas général, une courbe implicite est définie en coordonnées cartésiennes par une équation de la forme où F est une fonction de deux variables.
Théorème des fonctions implicitesEn mathématiques, le théorème des fonctions implicites est un résultat de géométrie différentielle. Certaines courbes planes sont définies par une équation cartésienne, c'est-à-dire une équation de la forme f(x, y) = 0, où x et y décrivent les nombres réels. Le théorème indique que si la fonction f est suffisamment régulière au voisinage d'un point de la courbe, il existe une fonction φ de R dans R au moins aussi régulière que f telle que localement, la courbe et le graphe de la fonction φ sont confondus.