Multiple birthA multiple birth is the culmination of one multiple pregnancy, wherein the mother gives birth to two or more babies. A term most applicable to vertebrate species, multiple births occur in most kinds of mammals, with varying frequencies. Such births are often named according to the number of offspring, as in twins and triplets. In non-humans, the whole group may also be referred to as a litter, and multiple births may be more common than single births. Multiple births in humans are the exception and can be exceptionally rare in the largest mammals.
String operationsIn computer science, in the area of formal language theory, frequent use is made of a variety of string functions; however, the notation used is different from that used for computer programming, and some commonly used functions in the theoretical realm are rarely used when programming. This article defines some of these basic terms. A string is a finite sequence of characters. The empty string is denoted by . The concatenation of two string and is denoted by , or shorter by . Concatenating with the empty string makes no difference: .
Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Joint de grainsUn joint de grains est l'interface entre deux cristaux de même structure cristalline et de même composition, mais d’orientation différente. vignette|Microstructure de VT22 () après trempe. L'échelle est en micromètres. vignette|Schéma d'un joint de grain, dont les atomes communs à deux cristaux (orange et bleu) sont représentés en vert. Les joints de grains peuvent se former dans deux cas de figure : lors de la solidification du matériau et par recristallisation, durant certains traitements thermomécaniques.
Matrice diagonalisableEn mathématiques, une matrice diagonalisable est une matrice carrée semblable à une matrice diagonale. Cette propriété est équivalente à l'existence d'une base de vecteurs propres, ce qui permet de définir de manière analogue un endomorphisme diagonalisable d'un espace vectoriel. Le fait qu'une matrice soit diagonalisable dépend du corps dans lequel sont cherchées les valeurs propres, ce que confirme la caractérisation par le fait que le polynôme minimal soit scindé à racines simples.
Catégorie groupoïdeEn mathématiques, et plus particulièrement en théorie des catégories et en topologie algébrique, la notion de groupoïde généralise à la fois les notions de groupe, de relation d'équivalence sur un ensemble, et de l'action d'un groupe sur un ensemble. Elle a été initialement développée par Heinrich Brandt en 1927. Les groupoïdes sont souvent utilisés pour représenter certaines informations sur des objets topologiques ou géométriques comme les variétés. Un groupoïde est une petite catégorie dans laquelle tout morphisme est un isomorphisme.
String literalA string literal or anonymous string is a literal for a string value in the source code of a computer program. Modern programming languages commonly use a quoted sequence of characters, formally "bracketed delimiters", as in x = "foo", where "foo" is a string literal with value foo. Methods such as escape sequences can be used to avoid the problem of delimiter collision (issues with brackets) and allow the delimiters to be embedded in a string. There are many alternate notations for specifying string literals especially in complicated cases.
Groupe abélien libreEn mathématiques, un groupe abélien libre est un groupe abélien qui possède une base, c'est-à-dire une partie B telle que tout élément du groupe s'écrive de façon unique comme combinaison linéaire à coefficients entiers (relatifs) d'éléments de B. Comme les espaces vectoriels, les groupes abéliens libres sont classifiés (à isomorphisme près) par leur rang, défini comme le cardinal d'une base, et tout sous-groupe d'un groupe abélien libre est lui-même abélien libre.
Chaîne de caractèresEn informatique, une chaîne de caractères est à la fois conceptuellement une suite ordonnée de caractères et physiquement une suite ordonnée d' unités de code (code unit). La chaîne de caractères est un type de donnée dans de nombreux langages informatiques. La traduction en anglais est string. À l'époque des pionniers, on a communément confondu chaîne de caractères et chaîne d'octets, ce qui prête aujourd'hui à confusion, lorsque l'on ne veut pas se limiter à 255 caractères.
Algèbre géométrique (structure)Une algèbre géométrique est, en mathématiques, une structure algébrique, similaire à une algèbre de Clifford réelle, mais dotée d'une interprétation géométrique mise au point par David Hestenes, reprenant les travaux de Hermann Grassmann et William Kingdon Clifford (le terme est aussi utilisé dans un sens plus général pour décrire l'étude et l'application de ces algèbres : l'algèbre géométrique est l'étude des algèbres géométriques).