Introduction à la mécanique quantiqueLe but de cet article est de présenter une introduction accessible, non technique, au sujet. Pour l'article encyclopédique consulter Mécanique quantique. La mécanique quantique est la science de l'infiniment petit : elle regroupe l'ensemble des travaux scientifiques qui interprètent le comportement des constituants de la matière, et ses interactions avec l'énergie, à l'échelle des atomes et des particules subatomiques. La physique classique décrit la matière et l'énergie à l'échelle humaine, dans leur observation de tous les jours, y compris les corps célestes.
Histoire de la mécanique quantiquethumb|Le congrès Solvay de 1927, année charnière dans le passage des théories dites semi-classiques aux théories quantiques proprement dites. L'histoire de la mécanique quantique commence traditionnellement avec le problème de la catastrophe ultraviolette et sa résolution en 1900 par l'hypothèse de Max Planck stipulant que tout système atomique irradiant de l'énergie peut être divisé en « éléments d'énergie » discrets liés à la constante h qui, depuis, porte son nom (constante de Planck).
Gravitation quantique à bouclesLa gravitation quantique à boucles (loop quantum gravity en anglais) est une tentative de formuler une théorie de la gravitation quantique, et donc d'unifier la théorie de la relativité générale et les concepts de la physique quantique. Elle est fondée sur la quantification canonique directe de la relativité générale dans une formulation hamiltonienne (l'équation de Wheeler-DeWitt), les trois autres interactions fondamentales n'étant pas considérées dans un premier temps.
Postulats de la mécanique quantiquevignette|Participants au Congrès Solvay de 1927 sur la mécanique quantique Cet article traite des postulats de la mécanique quantique. La description du monde microscopique que fournit la mécanique quantique s'appuie sur une vision radicalement nouvelle, et s'oppose en cela à la mécanique classique. Elle repose sur des postulats. S'il existe un très large consensus entre les physiciens sur la manière de réaliser les calculs qui permettent de rendre compte des phénomènes quantiques et de prévoir leur évolution, il n'existe pas en revanche de consensus sur une manière unique de les expliquer aux étudiants.
Formule de Rydbergvignette|La formule de Rydberg comme elle apparaît dans un manuscrit de novembre 1888. En physique atomique, la formule de Rydberg permet de calculer les longueurs d'onde des raies spectrales de beaucoup d'éléments chimiques. Elle fut établie empiriquement en 1888 par le physicien suédois Johannes Rydberg à partir des raies spectrales des métaux alcalins et de la formule de Balmer, établie par Johann Jakob Balmer en 1885, pour les raies du spectre visible de l'hydrogène.
Mécanique quantique relativisteEn physique théorique, la mécanique quantique relativiste est une théorie qui tente d’unifier les postulats de la mécanique quantique non-relativiste et le principe de relativité restreinte afin de décrire la dynamique quantique d'une particule relativiste, i.e. dont la vitesse classique n'est pas très petite devant la vitesse de la lumière dans le vide. Les équations d'ondes relativistes qui généralisent l'équation de Schrödinger sont : l'équation de Klein-Gordon, qui décrit une particule massive de spin 0 ; l'équation de Dirac, qui décrit une particule massive de spin 1/2.
Théorie quantique des champsvignette|296x296px|Ce diagramme de Feynman représente l'annihilation d'un électron et d'un positron, qui produit un photon (représenté par une ligne ondulée bleue). Ce photon se décompose en une paire quark-antiquark, puis l'antiquark émet un gluon (représenté par la courbe verte). Ce type de diagramme permet à la fois de représenter approximativement les processus physiques mais également de calculer précisément leurs propriétés, comme la section efficace de collision.
Équations de Maxwellvignette|Plaque représentant les équations de Maxwell au pied de la statue en hommage à James Clerk Maxwell d'Edimbourg. Les équations de Maxwell, aussi appelées équations de Maxwell-Lorentz, sont des lois fondamentales de la physique. Elles constituent, avec l'expression de la force électromagnétique de Lorentz, les postulats de base de l'électromagnétisme. Ces équations traduisent sous forme locale différents théorèmes (Gauss, Ampère, Faraday) qui régissaient l'électromagnétisme avant que Maxwell ne les réunisse sous forme d'équations intégrales.
Boucle de WilsonEn théorie de jauge, une boucle de Wilson (nommée d'après Kenneth G. Wilson) est une observable invariante de jauge obtenue à partir de l'holonomie de la connexion de jauge autour d'une boucle donnée. Dans les théories classiques, l'ensemble de toutes les boucles de Wilson contient assez d'information pour reconstruire la connexion de jauge, à une transformation de jauge près.