Multinomial logistic regressionIn statistics, multinomial logistic regression is a classification method that generalizes logistic regression to multiclass problems, i.e. with more than two possible discrete outcomes. That is, it is a model that is used to predict the probabilities of the different possible outcomes of a categorically distributed dependent variable, given a set of independent variables (which may be real-valued, binary-valued, categorical-valued, etc.).
GéostatistiqueLa géostatistique est l'étude des variables régionalisées, à la frontière entre les mathématiques et les sciences de la Terre. Son principal domaine d'utilisation a historiquement été l'estimation des gisements miniers, mais son domaine d'application actuel est beaucoup plus large et tout phénomène spatialisé peut être étudié en utilisant la géostatistique. L'histoire de la géostatistique est liée à l'estimation des gisements exploités dans les mines. Dans les années 1950, un professeur de l'université du Witwatersrand en Afrique du Sud, Danie G.
Régression polynomialePolyreg scheffe.svg thumb|Régression sur un nuage de points par un polynôme de degré croissant. La régression polynomiale est une analyse statistique qui décrit la variation d'une variable aléatoire expliquée à partir d'une fonction polynomiale d'une variable aléatoire explicative. C'est un cas particulier de régression linéaire multiple, où les observations sont construites à partir des puissances d'une seule variable.
Moving-average modelIn time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable. Together with the autoregressive (AR) model, the moving-average model is a special case and key component of the more general ARMA and ARIMA models of time series, which have a more complicated stochastic structure.
Processus autorégressifUn processus autorégressif est un modèle de régression pour séries temporelles dans lequel la série est expliquée par ses valeurs passées plutôt que par d'autres variables. Un processus autorégressif d'ordre p, noté AR(p) est donné par : où sont les paramètres du modèle, est une constante et un bruit blanc. En utilisant l'opérateur des retards, on peut l'écrire : Un processus autorégressif d'ordre 1 s'écrit : On peut formuler le processus AR(1) de manière récursive par rapport aux conditions précédentes : En remontant aux valeurs initiales, on aboutit à : Il est à noter que les sommes vont ici jusqu'à l'infini.
Régression (statistiques)En mathématiques, la régression recouvre plusieurs méthodes d’analyse statistique permettant d’approcher une variable à partir d’autres qui lui sont corrélées. Par extension, le terme est aussi utilisé pour certaines méthodes d’ajustement de courbe. En apprentissage automatique, on distingue les problèmes de régression des problèmes de classification. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Système d'information géographiqueUn système d'information géographique ou SIG (en anglais, geographic information system ou GIS) est un système d'information conçu pour recueillir, stocker, traiter, analyser, gérer et présenter tous les types de données spatiales et géographiques. L’acronyme SIG est parfois utilisé pour définir les « sciences de l’information géographique » ou « études sur l’information géospatiale ». Cela se réfère aux carrières ou aux métiers qui impliquent l'usage de systèmes d’information géographique et, dans une plus large mesure, qui concernent les disciplines de la géo-informatique (ou géomatique).
Machine à vecteurs de supportLes machines à vecteurs de support ou séparateurs à vaste marge (en anglais support-vector machine, SVM) sont un ensemble de techniques d'apprentissage supervisé destinées à résoudre des problèmes de discrimination et de régression. Les SVM sont une généralisation des classifieurs linéaires. Les séparateurs à vaste marge ont été développés dans les années 1990 à partir des considérations théoriques de Vladimir Vapnik sur le développement d'une théorie statistique de l'apprentissage : la théorie de Vapnik-Tchervonenkis.
Ordinal regressionIn statistics, ordinal regression, also called ordinal classification, is a type of regression analysis used for predicting an ordinal variable, i.e. a variable whose value exists on an arbitrary scale where only the relative ordering between different values is significant. It can be considered an intermediate problem between regression and classification. Examples of ordinal regression are ordered logit and ordered probit.
Fertilité des solsvignette|Schéma global des composantes de la fertilité des sols. vignette|Le diagramme de Mulder illustre la loi de l'optimum de Liebscher. La fertilité des sols est une notion importante dans les domaines de l'agriculture et de l'agronomie, désignant l'aptitude d'un sol à produire dans les conditions actuelles de culture. Elle est une des composantes de la qualité des sols. Il n'existe pas de définition consensuelle de la fertilité des sols. La valeur scientifique du terme et la possibilité de parvenir à le définir est contestée.