In statistics, ordinal regression, also called ordinal classification, is a type of regression analysis used for predicting an ordinal variable, i.e. a variable whose value exists on an arbitrary scale where only the relative ordering between different values is significant. It can be considered an intermediate problem between regression and classification. Examples of ordinal regression are ordered logit and ordered probit. Ordinal regression turns up often in the social sciences, for example in the modeling of human levels of preference (on a scale from, say, 1–5 for "very poor" through "excellent"), as well as in information retrieval. In machine learning, ordinal regression may also be called ranking learning. Ordinal regression can be performed using a generalized linear model (GLM) that fits both a coefficient vector and a set of thresholds to a dataset. Suppose one has a set of observations, represented by length-p vectors x1 through xn, with associated responses y1 through yn, where each yi is an ordinal variable on a scale 1, ..., K. For simplicity, and without loss of generality, we assume y is a non-decreasing vector, that is, yi yi+1. To this data, one fits a length-p coefficient vector w and a set of thresholds θ1, ..., θK−1 with the property that θ1 < θ2 < ... < θK−1. This set of thresholds divides the real number line into K disjoint segments, corresponding to the K response levels. The model can now be formulated as or, the cumulative probability of the response y being at most i is given by a function σ (the inverse link function) applied to a linear function of x. Several choices exist for σ; the logistic function gives the ordered logit model, while using the probit function gives the ordered probit model. A third option is to use an exponential function which gives the proportional hazards model. The probit version of the above model can be justified by assuming the existence of a real-valued latent variable (unobserved quantity) y*, determined by where ε is normally distributed with zero mean and unit variance, conditioned on x.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (9)
ME-390: Foundations of artificial intelligence
This course provides the students with 1) a set of theoretical concepts to understand the machine learning approach; and 2) a subset of the tools to use this approach for problems arising in mechanica
MATH-408: Regression methods
General graduate course on regression methods
PHYS-467: Machine learning for physicists
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
Afficher plus
Publications associées (32)

Machine learning models for prediction of electrochemical properties in supercapacitor electrodes using MXene and graphene nanoplatelets

Mohammad Khaja Nazeeruddin

Herein, machine learning (ML) models using multiple linear regression (MLR), support vector regression (SVR), random forest (RF) and artificial neural network (ANN) are developed and compared to predict the output features viz. specific capacitance (Csp), ...
Lausanne2024

Quantifying the Unknown: Data-Driven Approaches and Applications in Energy Systems

Paul Scharnhorst

In light of the challenges posed by climate change and the goals of the Paris Agreement, electricity generation is shifting to a more renewable and decentralized pattern, while the operation of systems like buildings is increasingly electrified. This calls ...
EPFL2024

Analysing the potential for modal shiftbased on the logic of modal choice

Vincent Kaufmann, Eloi Antoine Maël Bernier, Florian Lucien Jacques Masse, Ludy Juliana González Villamizar

This article explores how the logic underlying modal practices tends to modulate the population’s responsiveness to improvements in global transport supply. Based on a quantitative survey conducted in 2018–2019 among the working population of the cantons o ...
2023
Afficher plus
Concepts associés (1)
Variable ordinale
vignette|Exemple de représentation d’une variable ordinale : le niveau de certification par vignette Crit'Air. En statistique, une variable ordinale est une variable catégorielle dont les modalités sont totalement ordonnées, représentant chacune un niveau dans une gradation. Ces niveaux peuvent être codées par des lettres ou des chiffres sans que ceux-ci correspondent forcément à une grandeur numérique quantifiable, par exemple pour un degré de satisfaction, un grade militaire ou un numéro de version d’un logiciel.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.