Production d'hydrogèneLa production d'hydrogène, ou plus exactement de dihydrogène, est en grande majorité réalisée par extraction chimique depuis des combustibles fossiles, principalement du méthane, du charbon et de coupes pétrolières. La production de dihydrogène par cette voie présente l'avantage d'un coût compétitif, mais l'inconvénient d'être à l'origine d'émissions de non biogénique, qui dépassent généralement dix kilogrammes de par kilogramme d'hydrogène produit.
Économie hydrogèneLéconomie hydrogène ou économie de l'hydrogène est le modèle économique dans lequel le dihydrogène (de formule chimique ) servirait de vecteur d'énergie commun pour mutualiser les différents types de production d’énergie et pallier le problème de l’intermittence des énergies renouvelables. Ce principe est envisagé pour la première fois par Jules Verne en 1874, puis de façon plus détaillée par John Burdon Sanderson Haldane en 1923, et l'Allemagne nazie l'utilise pour produire des combustibles synthétiques à partir du charbon.
Stockage de l'hydrogèneLe concept de stockage de l'hydrogène désigne toutes les formes de mise en réserve du dihydrogène en vue de sa mise à disposition ultérieure comme produit chimique ou vecteur énergétique. Plusieurs possibilités existent, qui présentent avantages et inconvénients. Sous forme de gaz, le dihydrogène est peu dense et doit être fortement comprimé. La liquéfaction du dihydrogène se réalise à très basse température. L'hydrogène solide nécessite d'être lié à d'autres composants, notamment sous la forme d'hydrure.
Infrastructure hydrogèneLes infrastructures hydrogène sont les infrastructures de transport par pipeline de l'hydrogène, les points de production d'hydrogène et les stations à hydrogène (parfois regroupées comme une autoroute de l'hydrogène) pour la distribution ainsi que la vente de carburant hydrogène, et donc une condition préalable cruciale avant une commercialisation réussie de technologie de la pile à combustible automobile.
HydrogèneLhydrogène est l'élément chimique de numéro atomique 1, de symbole H. L'hydrogène présent sur Terre est presque entièrement constitué de l'isotope H (ou protium, comportant un proton et zéro neutron) et d'environ 0,01 % de deutérium H (un proton, un neutron). Ces deux isotopes de l'hydrogène sont stables. Un troisième isotope, le tritium H (un proton, deux neutrons), instable, est produit dans les réactions de fission nucléaire (réacteurs nucléaires ou bombes).
Véhicule à hydrogèneUn véhicule à hydrogène est un moyen de transport qui utilise une transformation chimique du dihydrogène comme énergie de propulsion. En particulier, on appelle voiture à hydrogène un véhicule à propulsion électrique muni d'une pile à combustible utilisant le plus souvent l'hydrogène comme combustible réducteur. C'est un type particulier de véhicule à pile à combustible. Cette appellation englobe des véhicules du domaine de l'aérospatiale (comme les fusées) ou du domaine militaire (comme des sous-marins à hydrogène), bien que l'usage courant renvoie plutôt au monde des transports.
Solar fuelA solar fuel is a synthetic chemical fuel produced from solar energy. Solar fuels can be produced through photochemical (i.e. activation of certain chemical reactions by photons), photobiological (i.e., artificial photosynthesis), and electrochemical reactions (i.e. using the electricity from solar panels to drive a chemical reaction). Solar fuels can also be produced by thermochemical reactions (i.e., through the use of solar heat supplied by concentrated solar thermal energy to drive a chemical reaction).
Hydrogène métalliqueL'hydrogène métallique est une phase de l'hydrogène qui survient lorsqu'il est soumis à une très forte pression. C'est un exemple de matière dégénérée. Il est estimé qu'il y a un intervalle de pressions (autour de ) tel que l'hydrogène métallique est liquide, même à de très basses températures. L'hydrogène métallique consiste en un treillis de noyaux atomiques, des protons, dont l'espacement est significativement plus petit que le rayon de Bohr. En effet, l'espacement est davantage comparable à une longueur d'onde d'électron (voir hypothèse de De Broglie).
BiohydrogenBiohydrogen is H2 that is produced biologically. Interest is high in this technology because H2 is a clean fuel and can be readily produced from certain kinds of biomass, including biological waste. Furthermore some photosynthetic microorganisms are capable to produce H2 directly from water splitting using light as energy source. Besides the promising possibilities of biological hydrogen production, many challenges characterize this technology. First challenges include those intrinsic to H2, such as storage and transportation of an explosive noncondensible gas.
Hydrogène vertvignette|upright=1.5|Schéma de production et de consommation d'hydrogène vert (l'éolienne représente la production d'électricité décarbonée). L'hydrogène vert est le dihydrogène produit : au sens large (on parle alors aussi d'hydrogène propre), de manière décarbonée, sans libération significative de gaz à effet de serre (dans ce sens il inclut l'hydrogène jaune, rouge, bleu, turquoise, orange ou blanc) ; au sens restreint, par électrolyse de l'eau, à partir d'une source d'énergie renouvelable, ou d'une source bas carbone (énergie renouvelable ou nucléaire), selon les définitions.