Commande optimaleLa théorie de la commande optimale permet de déterminer la commande d'un système qui minimise (ou maximise) un critère de performance, éventuellement sous des contraintes pouvant porter sur la commande ou sur l'état du système. Cette théorie est une généralisation du calcul des variations. Elle comporte deux volets : le principe du maximum (ou du minimum, suivant la manière dont on définit l'hamiltonien) dû à Lev Pontriaguine et à ses collaborateurs de l'institut de mathématiques Steklov , et l'équation de Hamilton-Jacobi-Bellman, généralisation de l'équation de Hamilton-Jacobi, et conséquence directe de la programmation dynamique initiée aux États-Unis par Richard Bellman.
Vanishing gradient problemIn machine learning, the vanishing gradient problem is encountered when training artificial neural networks with gradient-based learning methods and backpropagation. In such methods, during each iteration of training each of the neural networks weights receives an update proportional to the partial derivative of the error function with respect to the current weight. The problem is that in some cases, the gradient will be vanishingly small, effectively preventing the weight from changing its value.
Relaxation continueEn informatique théorique et en recherche opérationnelle, la relaxation continue est une méthode qui consiste à interpréter de façon continue un problème combinatoire ou discret. Cette méthode est utilisée afin d'obtenir des informations sur le problème discret initial et parfois même pour obtenir sa solution. Les problèmes discrets ou combinatoires sont en effet très difficiles à traiter en raison de l'explosion combinatoire et il est courant de les traiter par une méthode de séparation et évaluation (branch and bound en anglais) : la relaxation continue fait partie des algorithmes d'évaluation nécessaire à la mise en œuvre de cette méthode.
Réseau de flotEn théorie des graphes, un réseau de flot (aussi appelé réseau de transport) est un graphe orienté où chaque arête possède une capacité et peut recevoir un flot (ou flux). Le cumul des flots sur une arête ne peut pas excéder sa capacité. Un graphe orienté est souvent appelé réseau en recherche opérationnelle. Les sommets sont alors appelés des nœuds et les arêtes des arcs. Pour qu'un flot soit valide, il faut que la somme des flots atteignant un nœud soit égale à la somme des flots quittant ce nœud, sauf s'il s'agit d'une source (qui n'a pas de flot entrant), ou d'un puits (qui n'a pas de flot sortant).
Fonction d'ondethumb|300px|right|Illustration de la notion de fonction d'onde dans le cas d'un oscillateur harmonique. Le comportement en mécanique classique est représenté sur les images A et B et celui en mécanique quantique sur les figures C à H. Les parties réelles et imaginaires des fonctions d'onde sont représentées respectivement en bleu et en rouge. Les images C à F correspondent à des états stationnaires de l'énergie, tandis que les figures G et H correspondent à des états non stationnaires.
Grails (technique)Grails est un framework open source de développement agile d'applications web basé sur le langage Groovy et sur le patron de conception Modèle-Vue-Contrôleur. Grails est la contraction de Groovy (car le framework est basé sur le langage Groovy) on Rails (pour exprimer le fait qu'il s'agit d'un framework de développement rapide), destiné à produire un jeu de mots faisant allusion au Graal (Grail en anglais), et faisant echo à Ruby on Rails. Grails est basé sur cinq principes fondamentaux : Ne pas se répéter : les éléments de l'application ne doivent être qu'à un seul endroit.
Algorithmethumb|Algorithme de découpe d'un polygone quelconque en triangles (triangulation). Un algorithme est une suite finie et non ambiguë d'instructions et d’opérations permettant de résoudre une classe de problèmes. Le domaine qui étudie les algorithmes est appelé l'algorithmique. On retrouve aujourd'hui des algorithmes dans de nombreuses applications telles que le fonctionnement des ordinateurs, la cryptographie, le routage d'informations, la planification et l'utilisation optimale des ressources, le , le traitement de textes, la bio-informatique L' algorithme peut être mis en forme de façon graphique dans un algorigramme ou organigramme de programmation.
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Fonction d'activationDans le domaine des réseaux de neurones artificiels, la fonction d'activation est une fonction mathématique appliquée à un signal en sortie d'un neurone artificiel. Le terme de "fonction d'activation" vient de l'équivalent biologique "potentiel d'activation", seuil de stimulation qui, une fois atteint entraîne une réponse du neurone. La fonction d'activation est souvent une fonction non linéaire. Un exemple de fonction d'activation est la fonction de Heaviside, qui renvoie tout le temps 1 si le signal en entrée est positif, ou 0 s'il est négatif.
Algorithme d'approximationEn informatique théorique, un algorithme d'approximation est une méthode permettant de calculer une solution approchée à un problème algorithmique d'optimisation. Plus précisément, c'est une heuristique garantissant à la qualité de la solution qui fournit un rapport inférieur (si l'on minimise) à une constante, par rapport à la qualité optimale d'une solution, pour toutes les instances possibles du problème.