Principle of covarianceIn physics, the principle of covariance emphasizes the formulation of physical laws using only those physical quantities the measurements of which the observers in different frames of reference could unambiguously correlate. Mathematically, the physical quantities must transform covariantly, that is, under a certain representation of the group of coordinate transformations between admissible frames of reference of the physical theory. This group is referred to as the covariance group.
SystèmeUn système est un ensemble d' interagissant entre eux selon certains principes ou règles. Par exemple une molécule, le système solaire, une ruche, une société humaine, un parti, une armée etc. Un système est déterminé par : sa frontière, c'est-à-dire le critère d'appartenance au système (déterminant si une entité appartient au système ou fait au contraire partie de son environnement) ; ses interactions avec son environnement ; ses fonctions (qui définissent le comportement des entités faisant partie du système, leur organisation et leurs interactions) ; Certains systèmes peuvent également avoir une mission (ses objectifs et sa raison d'être) ou des ressources, qui peuvent être de natures différentes (humaine, naturelle, matérielle, immatérielle.
Relativistic wave equationsIn physics, specifically relativistic quantum mechanics (RQM) and its applications to particle physics, relativistic wave equations predict the behavior of particles at high energies and velocities comparable to the speed of light. In the context of quantum field theory (QFT), the equations determine the dynamics of quantum fields. The solutions to the equations, universally denoted as ψ or Ψ (Greek psi), are referred to as "wave functions" in the context of RQM, and "fields" in the context of QFT.
Mécanique quantiqueLa mécanique quantique est la branche de la physique théorique qui a succédé à la théorie des quanta et à la mécanique ondulatoire pour étudier et décrire les phénomènes fondamentaux à l'œuvre dans les systèmes physiques, plus particulièrement à l'échelle atomique et subatomique. Elle fut développée dans les années 1920 par une dizaine de physiciens européens, pour résoudre des problèmes que la physique classique échouait à expliquer, comme le rayonnement du corps noir, l'effet photo-électrique, ou l'existence des raies spectrales.
Événement (espace-temps)En physique, un événement – ou évènement – est un point de l'espace-temps, correspondant à un certain lieu à un certain instant. Par rapport à la signification courante du mot événement, l'événement physique définit la position et la date de l'évènement ordinaire, sans fournir d'information sur la nature de cet évènement ordinaire. vignette|En relativité restreinte, dans un référentiel inertiel donné, l'observateur mesure les événements par rapport à un réseau infini d'horloges synchronisées.
Tests de l'énergie et de la quantité de mouvement relativistesLes tests de l'énergie et de la quantité de mouvement relativistes visent à confirmer les expressions relativistes de l'énergie, de la quantité de mouvement et de la masse. Selon la relativité restreinte, certaines propriétés de particules élémentairess massives qui atteignent des vitesses proches de la vitesse de la lumière dévient de façon significative des prédictions de la mécanique newtonienne. Par exemple, aucune particule massive ne peut atteindre la vitesse de la lumière.
InvariantEn mathématiques, le mot invariant possède suivant le contexte différentes significations (non équivalentes). Il est utilisé aussi bien en géométrie et en topologie qu'en analyse et en algèbre. Si g : E→E est une application, un invariant de g est un point fixe, c'est-à-dire un élément x de E qui est sa propre image par g : Pour une telle application g, une partie P de E est dite : invariante point par point si tous ses éléments sont des points fixes ; globalement invariante par g, ou stable par g, si , c'est-à-dire : (cette propriété est moins forte que la précédente).
SymétrieLa symétrie est une propriété d'un système : c'est lorsque deux parties sont semblables. L'exemple le plus connu est la symétrie en géométrie. De manière générale, un système est symétrique quand on peut permuter ses éléments en laissant sa forme inchangée. Le concept d'automorphisme permet de préciser cette définition. Un papillon, par exemple, est symétrique parce qu'on peut permuter tous les points de la moitié gauche de son corps avec tous les points de la moitié droite sans que son apparence soit modifiée.
Galilée (savant)Galilée (Galileo Galilei), né à Pise le et mort à Arcetri près de Florence le , est un mathématicien, géomètre, physicien et astronome italien du . Parmi ses réalisations techniques, il a perfectionné et exploité la lunette astronomique, perfectionnement de la découverte hollandaise d'une lunette d'approche, pour procéder à des observations rapides et précoces qui ont bouleversé les fondements de l'astronomie. Cet homme de sciences s'est ainsi posé en défenseur de l'approche modélisatrice copernicienne de l'Univers, proposant d'adopter l'héliocentrisme et les mouvements satellitaires.
MasseEn physique, la masse est une grandeur physique positive intrinsèque d'un corps. On pensait traditionnellement qu'elle était liée à la quantité de matière contenue dans un corps physique, jusqu'à la découverte de l'atome et de la physique des particules. Il a été constaté que différents atomes et différentes particules élémentaires, ayant théoriquement la même quantité de matière, ont néanmoins des masses différentes. En physique newtonienne, c'est une grandeur extensive, c'est-à-dire que la masse d'un corps formé de parties est la somme des masses de ces parties.