Échantillonnage (signal)L'échantillonnage consiste à prélever les valeurs d'un signal à intervalles définis, généralement réguliers. Il produit une suite de valeurs discrètes nommées échantillons. L'application la plus courante de l'échantillonnage est aujourd'hui la numérisation d'un signal variant dans le temps, mais son principe est ancien. Depuis plusieurs siècles, on surveille les mouvements lents en inscrivant, périodiquement, les valeurs relevées dans un registre : ainsi des hauteurs d'eau des marées ou des rivières, de la quantité de pluie.
Théorème d'échantillonnageLe théorème d'échantillonnage, dit aussi théorème de Shannon ou théorème de Nyquist-Shannon, établit les conditions qui permettent l'échantillonnage d'un signal de largeur spectrale et d'amplitude limitées. La connaissance de plus de caractéristiques du signal permet sa description par un nombre inférieur d'échantillons, par un processus d'acquisition comprimée. Dans le cas général, le théorème d'échantillonnage énonce que l’échantillonnage d'un signal exige un nombre d'échantillons par unité de temps supérieur au double de l'écart entre les fréquences minimale et maximale qu'il contient.
Moiré (physique)thumb|Móvil (Mobile, Eusebio Sempere, 1972) ; sculpture de plein air exploitant l'effet de moiré (Madrid). Le moiré est un effet de contraste changeant avec la déformation d'un objet, indépendamment des effets d'ombre. On parle souvent du moiré d'une étoffe (par exemple de la soie). On peut obtenir un effet similaire en superposant deux voiles à maille régulière, ou bien lorsque l'on observe deux grillages l'un derrière l'autre, ou encore deux rambardes de pont, à une certaine distance.
Repliement de spectrethumb|300px|Ce graphique démontre le repliement du spectre d'un signal sinusoïdal de fréquence f = 0,9, confondu avec un signal de fréquence f = 0,1 lors d'un échantillonnage de période T = 1,0. Le repliement de spectre (aliasing en anglais) est un phénomène qui introduit, dans un signal qui module une fréquence porteuse ou dans un signal échantillonné, des fréquences qui ne devraient pas s'y trouver, lorsque la fréquence porteuse ou la fréquence d'échantillonnage sont inférieures à deux fois la fréquence maximale contenue dans le signal.
Fourier analysisIn mathematics, Fourier analysis (ˈfʊrieɪ,_-iər) is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics.
Fréquence de NyquistLa fréquence de Nyquist, du nom de l'ingénieur électronicien Harry Nyquist, est la fréquence maximale que doit contenir un signal pour permettre sa description non ambiguë par un échantillonnage à intervalles réguliers. Elle est aussi connue sous le nom de fréquence limite de repliement. Elle est égale à la moitié de la fréquence d'échantillonnage. Le théorème d'échantillonnage procède de l'analyse spectrale, qui montre que tout signal peut se décomposer en une somme de sinusoïdes.
Série de Fouriervignette|250px|Les quatre premières sommes partielles de la série de Fourier pour un signal carré. vignette|250px|Le premier graphe donne l'allure du graphe d'une fonction périodique ; l'histogramme donne les valeurs des modules des coefficients de Fourier correspondant aux différentes fréquences. En analyse mathématique, les séries de Fourier sont un outil fondamental dans l'étude des fonctions périodiques. C'est à partir de ce concept que s'est développée la branche des mathématiques connue sous le nom d'analyse harmonique.
Transformation de Fourierthumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.
Nyquist rateIn signal processing, the Nyquist rate, named after Harry Nyquist, is a value (in units of samples per second or hertz, Hz) equal to twice the highest frequency (bandwidth) of a given function or signal. When the function is digitized at a higher sample rate (see ), the resulting discrete-time sequence is said to be free of the distortion known as aliasing. Conversely, for a given sample-rate the corresponding Nyquist frequency in Hz is one-half the sample-rate.
Théorie spectraleEn mathématiques, et plus particulièrement en analyse, une théorie spectrale est une théorie étendant à des opérateurs définis sur des espaces fonctionnels généraux la théorie élémentaire des valeurs propres et des vecteurs propres de matrices. Bien que ces idées viennent au départ du développement de l'algèbre linéaire, elles sont également liées à l'étude des fonctions analytiques, parce que les propriétés spectrales d'un opérateur sont liées à celles de fonctions analytiques sur les valeurs de son spectre.