Bruit blancthumb|Échantillon de bruit blanc. thumb|Spectre plat d'un bruit blanc (sur l'abscisse, la fréquence ; en ordonnée, l'intensité). Un bruit blanc est une réalisation d'un processus aléatoire dans lequel la densité spectrale de puissance est la même pour toutes les fréquences de la bande passante. Le bruit additif blanc gaussien est un bruit blanc qui suit une loi normale de moyenne et variance données. Des générateurs de signaux aléatoires () sont utilisés pour des essais de dispositifs de transmission et, à faible niveau, pour l'amélioration des systèmes numériques par dither.
Accès multiple par répartition temporelleLe time division multiple access (TDMA) ou accès multiple par répartition temporelle en français, est une technique de contrôle d'accès au support permettant de transmettre plusieurs flux de trafic sur un seul canal ou une seule bande de fréquence. Il utilise une division temporelle de la bande passante, dont le principe est de répartir le temps disponible entre les différents utilisateurs. Par ce moyen, une fréquence (porteuse) ou une longueur d'onde peut être allouée, à tour de rôle (quasi simultanément), à plusieurs abonnés.
Code division multiple accessCode division multiple access (CDMA) ou accès multiple par répartition en code (AMRC) est un système de codage des transmissions, utilisant la technique d'étalement de spectre. Il permet à plusieurs liaisons numériques d'utiliser simultanément la même fréquence porteuse. Le principe est l'utilisation simultanée de plusieurs codes. Ce système était utilisé dans certains réseaux de téléphonie mobile dans le segment d'accès radio, par plus de 275 opérateurs dans le monde surtout en Asie et en Amérique du Nord.
Filtre de GaussLe filtre de Gauss est, en électronique et en traitement du signal, un filtre dont la réponse impulsionnelle est une fonction gaussienne. Le filtre de Gauss minimise les temps de montée et de descente, tout en assurant l'absence de dépassement en réponse à un échelon. Cette propriété est étroitement liée au fait que le filtre de Gauss présente un retard de groupe minimal. En mathématiques, le filtre de Gauss modifie le signal entrant par une convolution avec une fonction gaussienne ; cette transformation est également appelée transformation de Weierstrass.
Sciences numériquesLes sciences numériques (traduction de l'anglais computational sciences), autrement dénommées calcul scientifique ou informatique scientifique, ont pour objet la construction de modèles mathématiques et de méthodes d'analyse quantitative, en se basant sur l'utilisation des sciences du numérique, pour analyser et résoudre des problèmes scientifiques. Cette approche scientifique basée sur un recours massif aux modélisations informatiques et mathématiques et à la simulation se décline en : médecine numérique, biologie numérique, archéologie numérique, mécanique numérique, par exemple.
Programmation fonctionnelleLa programmation fonctionnelle est un paradigme de programmation de type déclaratif qui considère le calcul en tant qu'évaluation de fonctions mathématiques. Comme le changement d'état et la mutation des données ne peuvent pas être représentés par des évaluations de fonctions la programmation fonctionnelle ne les admet pas, au contraire elle met en avant l'application des fonctions, contrairement au modèle de programmation impérative qui met en avant les changements d'état.
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Loi inverse-gaussienneEn théorie des probabilités et en statistique, la loi inverse-gaussienne (ou loi gaussienne inverse ou encore loi de Wald) est une loi de probabilité continue à deux paramètres et à valeurs strictement positives. Elle est nommée d'après le statisticien Abraham Wald. Le terme « inverse » ne doit pas être mal interprété, la loi est inverse dans le sens suivant : la valeur du mouvement brownien à un temps fixé est de loi normale, à l'inverse, le temps en lequel le mouvement brownien avec une dérive positive (drifté) atteint une valeur fixée est de loi inverse-gaussienne.
HypercalculLe terme hypercalcul désigne les différentes méthodes proposées pour le calcul de fonctions non-Turing-calculables. Il a été initialement introduit par Jack Copeland. On emploie également le terme de calcul super-Turing, bien que celui d'hypercalcul puisse être connoté de la séduisante possibilité qu'une telle machine soit physiquement réalisable. Certains modèles ont été proposés, comme des réseaux de neurones avec des nombres réels en guise de poids, la capacité de conduire une infinité de calculs simultanément ou encore l'aptitude à effectuer des opérations non Turing-calculables, telles que des limites ou des intégrations.
Canal de communication (théorie de l'information)vignette En théorie de l'information, un canal de communication ou canal de transmission est un support (physique ou non) permettant la transmission d'une certaine quantité d'information, depuis une source (ou émetteur) vers un destinataire (ou récepteur). Souvent, le canal altère l'information transmise, par exemple en ajoutant un bruit aléatoire. La quantité d'information qu'un canal de communication peut transporter est limitée : on parle de capacité du canal.