Résumé
thumb|Échantillon de bruit blanc. thumb|Spectre plat d'un bruit blanc (sur l'abscisse, la fréquence ; en ordonnée, l'intensité). Un bruit blanc est une réalisation d'un processus aléatoire dans lequel la densité spectrale de puissance est la même pour toutes les fréquences de la bande passante. Le bruit additif blanc gaussien est un bruit blanc qui suit une loi normale de moyenne et variance données. Des générateurs de signaux aléatoires () sont utilisés pour des essais de dispositifs de transmission et, à faible niveau, pour l'amélioration des systèmes numériques par dither. En synthèse et traitement du son, on ne considère que les fréquences audibles, comprises entre quelques hertz et ; le « bruit blanc » désigne, sans rigueur mathématique, une variété aiguë de souffle. Par analogie avec la lumière blanche qui mélange toutes les fréquences lumineuses, un bruit blanc est un processus stochastique qui possède la même densité spectrale de puissance à toutes les fréquences. Ceci correspond à une autocorrélation nulle en tout point sauf à l'origine : le processus est décorrélé. S'il est gaussien, cette décorrélation entraîne l'indépendance. La décorrélation conduit à une puissance moyenne ou variance infinie. Le processus correspondant ne peut donc exister mais c'est une approximation commode pour le calcul de la réponse d'un système peu amorti. Plus concrètement, un bruit blanc filtré à la fréquence correspond à un processus échantillonné à , ce résultat étant utilisé dans les simulations. thumb|Approximation d'une excitation aléatoire par un bruit blanc. En toute rigueur, un bruit blanc ne peut exister car une densité spectrale identique pour toutes les fréquences conduirait à une variance, mesurée par l'aire sous la courbe, infinie (et donc une puissance infinie). Cette solution est néanmoins intéressante dans certains problèmes pratiques car, bien qu'il ne puisse exister, on montre que la réponse à un bruit blanc d'un système amorti reste finie.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.