Treillis (ensemble ordonné)En mathématiques, un treillis () est une des structures algébriques utilisées en algèbre générale. C'est un ensemble partiellement ordonné dans lequel chaque paire d'éléments admet une borne supérieure et une borne inférieure. Un treillis peut être vu comme le treillis de Galois d'une relation binaire. Il existe en réalité deux définitions équivalentes du treillis, une concernant la relation d'ordre citée précédemment, l'autre algébrique. Tout ensemble muni d'une relation d'ordre total est un treillis.
Glossaire de topologieCeci est un glossaire de quelques termes utilisés en topologie. Ce glossaire est divisé en deux parties. La première traite des concepts généraux, et la seconde liste différents types d'espaces topologiques. Dans ce glossaire, tous les espaces sont supposés topologiques. Accessible : voir l'axiome de séparation T1. Adhérence L'adhérence ou fermeture d'une partie d'un espace topologique est le plus petit fermé contenant celle-ci. Un point est dit adhérent à une partie s'il appartient à son adhérence.
Monade (informatique)En théorie des langages fonctionnels typés, une monade est un patron de conception qui combine des éléments de langages fonctionnels avec des méthodologies propres aux langages impératifs. En pratique, les valeurs retournées par des portions de programme (qui peuvent être vus comme des fonctions) sont englobées en un type pour être enchaînées ultérieurement en d'autres calculs. Il s'agit alors d'avoir une représentation simulant exactement des notions telles que les exceptions ou les effets de bords, tout en conservant la logique propre à la programmation fonctionnelle.
Catégorie enrichieUne catégorie enrichie sur une catégorie monoïdale , ou -catégorie est une extension du concept mathématique de catégorie, où les morphismes, au lieu de former une classe ou un ensemble dépourvu de structure, sont des éléments de . Le concept de catégorie enrichie part de l'observation que dans de nombreuses situations, les morphismes ont une structure naturelle d'espace vectoriel ou topologique. La catégorie doit être monoïdale afin de pouvoir définir la composition des morphismes, appelés dans ce cas hom-objets au lieu de hom-sets.
Family of setsIn set theory and related branches of mathematics, a collection of subsets of a given set is called a family of subsets of , or a family of sets over More generally, a collection of any sets whatsoever is called a family of sets, set family, or a set system. A family of sets may be defined as a function from a set , known as the index set, to , in which case the sets of the family are indexed by members of .
Identification de systèmeL'identification de système ou identification paramétrique est une technique de l'automatique consistant à obtenir un modèle mathématique d'un système à partir de mesures. L'identification consiste à appliquer ou observer des signaux de perturbation à l'entrée d'un système (par exemple, pour un système électronique, ceux-ci peuvent être de type binaire aléatoire ou pseudo-aléatoire, galois, sinus à fréquences multiples...) et en analyser la sortie dans le but d'obtenir un modèle purement mathématique.
Groupe classiqueEn mathématiques, les groupes classiques sont différentes familles de groupes de transformations liées à l'algèbre linéaire, principalement les groupes linéaires, orthogonaux, symplectiques et unitaires. Ces groupes peuvent aussi être présentés comme groupes de matrices inversibles, et des quotients de ceux-ci. Les groupes matrices carrées d'ordre n (GL(n, R)), GL(n, C)), le groupe des matrices orthogonales d'ordre n (O(n)) et le groupe des matrices unitaires d'ordre n (U(n)) sont des exemples explicites de groupes classiques.
Nonlinear system identificationSystem identification is a method of identifying or measuring the mathematical model of a system from measurements of the system inputs and outputs. The applications of system identification include any system where the inputs and outputs can be measured and include industrial processes, control systems, economic data, biology and the life sciences, medicine, social systems and many more. A nonlinear system is defined as any system that is not linear, that is any system that does not satisfy the superposition principle.