Automate probabilisteEn mathématiques et en informatique théorique, et notamment en théorie des automates, un automate probabiliste est une généralisation des automates finis non déterministes; chaque transition de l'automate est équipée d'une probabilité (un nombre réel entre 0 et 1). Les transitions sont représentées de manière compacte par des matrices qui sont des matrices stochastiques. Les langages reconnus par les automates probabilistes sont appelés langages stochastiques; ils comprennent, et étendent, la famille des langages rationnels.
Automate fini inambiguupright=1.5|thumb|Un automate fini inambigu à n+1 états reconnaissant les mots qui ont un a en position n depuis la fin. Un automate déterministe équivalent a au moins états En théorie des automates, un automate fini inambigu (on dit aussi non ambigu, en anglais , abrégé en UFA) est un automate fini non déterministe d'un type particulier. C'est un automate qui, pour chaque mot accepté, ne possède qu'un seul calcul réussi. Tout automate fini déterministe est inambigu, mais la réciproque est fausse.
Markov modelIn probability theory, a Markov model is a stochastic model used to model pseudo-randomly changing systems. It is assumed that future states depend only on the current state, not on the events that occurred before it (that is, it assumes the Markov property). Generally, this assumption enables reasoning and computation with the model that would otherwise be intractable. For this reason, in the fields of predictive modelling and probabilistic forecasting, it is desirable for a given model to exhibit the Markov property.
Automate fini non déterministeUn automate fini (on dit parfois, par une traduction littérale de l'anglais, machine à états finis, au lieu de machine avec un nombre fini d'états ou machine à états finie ou machine finie à états), finite-state automaton ou finite-state machine (FSA, FSM), est une machine abstraite qui est un outil fondamental en mathématiques discrètes et en informatique. On les retrouve dans la modélisation de processus, le contrôle, les protocoles de communication, la vérification de programmes, la théorie de la calculabilité, dans l'étude des langages formels et en compilation.
Théorie des automatesEn informatique théorique, l'objectif de la théorie des automates est de proposer des modèles de mécanismes mathématiques qui formalisent les méthodes de calcul.
Commande LQEn automatique, la Commande linéaire quadratique, dite Commande LQ, est une méthode qui permet de calculer la matrice de gains d'une commande par retour d'état. L'initiateur de cette approche est Kalman, auteur de trois articles fondamentaux entre 1960 et 1964. Les résultats de Kalman ont été complétés par de nombreux auteurs. Nous ne traiterons ici que de la commande linéaire quadratique à horizon infini dans le cas d'un système linéaire stationnaire (ou « invariant »), renvoyant à l'article Commande optimale pour le cas d'un horizon fini et d'un système linéaire dont les matrices varient en fonction du temps.
Propriété de Markovvignette|Exemple de processus stochastique vérifiant la propriété de Markov: un mouvement Brownien (ici représenté en 3D) d'une particule dont la position à un instant t+1 ne dépend que de la position précédente à l'instant t. En probabilité, un processus stochastique vérifie la propriété de Markov si et seulement si la distribution conditionnelle de probabilité des états futurs, étant donnés les états passés et l'état présent, ne dépend en fait que de l'état présent et non pas des états passés (absence de « mémoire »).
Transducteur finiEn informatique théorique, en linguistique, et en particulier en théorie des automates, un transducteur fini (appelé aussi transducteur à états finis par une traduction littérale de l'anglais finite state transducer) est un automate fini avec sorties. C'est une extension des automates finis. Ils opèrent en effet sur les mots sur un alphabet d'entrée et, au lieu de simplement accepter ou refuser le mot, ils le transforment, de manière parfois non déterministe, en un ou plusieurs mots sur un alphabet de sortie.
Automate quantiqueEn informatique quantique et en informatique théorique, un automate fini quantique est une généralisation des automates finis où un mot est accepté selon le résultat d'une certaine mesure. Il existe plusieurs modèles des automates finis quantiques ; le plus restrictif est celui des automates dits « measure-once » de ; un autre est celui des automates « measure-many » de . Ces deux modèles sont très différents l'un de l’autre ; le modèle « measure-once » se rapproche plus de la théorie classique des automates finis.
Langage rationnelEn théorie des langages, les langages rationnels ou langages réguliers ou encore langages reconnaissables peuvent être décrits de plusieurs façons équivalentes : ce sont les langages décrits par les expressions régulières ou rationnelles, d'où le nom de langages réguliers ; ce sont les langages obtenus, à partir des lettres et de l'ensemble vide, par les opérations rationnelles, à savoir l'union, le produit et l'étoile de Kleene, d'où le nom de langages rationnels ; ce sont les langages reconnus par des auto