Résumé
En automatique, la Commande linéaire quadratique, dite Commande LQ, est une méthode qui permet de calculer la matrice de gains d'une commande par retour d'état. L'initiateur de cette approche est Kalman, auteur de trois articles fondamentaux entre 1960 et 1964. Les résultats de Kalman ont été complétés par de nombreux auteurs. Nous ne traiterons ici que de la commande linéaire quadratique à horizon infini dans le cas d'un système linéaire stationnaire (ou « invariant »), renvoyant à l'article Commande optimale pour le cas d'un horizon fini et d'un système linéaire dont les matrices varient en fonction du temps. L'idée consiste à minimiser un critère de performance , quadratique en l'état x et la commande u, et qui est une somme pondérée de l'énergie de x et de celle de u. Le but de la commande consiste, à la suite d'une perturbation, à ramener, de préférence aussi rapidement que possible, l'état à sa valeur d'équilibre 0, compte tenu des contraintes liées à un cahier des charges. Si, dans , on privilégie l'énergie de x, c'est celle-ci qui va être essentiellement minimisée, au détriment de l'énergie de la commande, qui pourra donc être très grande: c'est l'adage « qui veut la fin veut les moyens »; dans ce cas la commande sera très nerveuse (à grands gains). Si au contraire on privilégie dans l'énergie de u, on met l'accent sur l'économie des moyens; on obtiendra donc une commande de faible énergie, molle, pour laquelle la dynamique de la boucle fermée sera lente. Le rôle du concepteur consiste à choisir habilement les matrices de pondérations qui interviennent dans le critère, de manière à obtenir in fine, après un certain nombre d'essais-erreurs, le comportement souhaité du système en boucle fermée. Notons que, quelle que soit la méthode employée pour la conception d'un régulateur, des essais-erreurs sont inévitables. Dans le cas de la commande linéaire quadratique, avec un minimum d'expérience, les essais-erreurs convergent très rapidement.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (188)
Concepts associés (2)
Commande optimale
La théorie de la commande optimale permet de déterminer la commande d'un système qui minimise (ou maximise) un critère de performance, éventuellement sous des contraintes pouvant porter sur la commande ou sur l'état du système. Cette théorie est une généralisation du calcul des variations. Elle comporte deux volets : le principe du maximum (ou du minimum, suivant la manière dont on définit l'hamiltonien) dû à Lev Pontriaguine et à ses collaborateurs de l'institut de mathématiques Steklov , et l'équation de Hamilton-Jacobi-Bellman, généralisation de l'équation de Hamilton-Jacobi, et conséquence directe de la programmation dynamique initiée aux États-Unis par Richard Bellman.
Théorie du contrôle
En mathématiques et en sciences de l'ingénieur, la théorie du contrôle a comme objet l'étude du comportement de systèmes dynamiques paramétrés en fonction des trajectoires de leurs paramètres. On se place dans un ensemble, l'espace d'état sur lequel on définit une dynamique, c'est-à-dire une loi mathématiques caractérisant l'évolution de variables (dites variables d'état) au sein de cet ensemble. Le déroulement du temps est modélisé par un entier .
Cours associés (6)
ME-324: Discrete-time control of dynamical systems
On introduit les bases de l'automatique linéaire discrète qui consiste à appliquer une commande sur des intervalles uniformément espacés. La cadence de l'échantillonnage qui est associée joue un rôle
ME-422: Multivariable control
This course covers methods for the analysis and control of systems with multiple inputs and outputs, which are ubiquitous in modern technology and industry. Special emphasis will be given to discrete-
ME-321: Control systems + TP
Provides the students with basic notions and tools for the analysis and control of dynamic systems. Shows them how to design controllers and analyze the performance of controlled systems.
Afficher plus
Séances de cours associées (73)
Observateurs d'État et contrôleurs des produits
Couvre la conception et la mise en œuvre d'observateurs d'état et de contrôleurs de retour de sortie dans des systèmes de contrôle multivariables.
Contrôle quadratique linéaire (LQ) : preuve de théorème
Couvre la preuve de la formule récursive pour les gains optimaux dans le contrôle LQ sur un horizon fini.
Contrôle multivariable: Attribution de l'État et de la valeur propre
Couvre la conception de contrôleur d'état-feedback pour les systèmes multivariables et discute des méthodes simplifiées pour les systèmes MIMO.
Afficher plus