FuturologieLa futurologie est un domaine interdisciplinaire qui agrège des données classées par des méthodes tant empiriques que logiques, en vue d'analyser des tendances et d'esquisser des scénarios plausibles de l’avenir. Elle examine les sources, les desseins et causes de changement et de stabilité pour formuler des prédictions. La futurologie est censée procéder à partir des données technologiques, économiques ou sociales du passé et du présent, et affirme se fonder sur des techniques (simulation, statistique) et des modèles scientifiques (science des systèmes, écologie).
Prédiction de gènesEn bio-informatique, la prédiction de gènes consiste à identifier les zones de l'ADN qui correspondent à des gènes (le reste étant non codant). Les méthodes par similitudes, aussi appelées méthodes par homologie ou méthodes extrinsèques, consistent à utiliser des informations extérieures au génome pour trouver les gènes. Plus précisément, ces méthodes consistent à comparer la séquence étudiée avec des séquences connues, rassemblées dans les bases de données.
Régression non linéaireUne régression non linéaire consiste à ajuster un modèle, en général non linéaire, y = ƒa1, ..., am(x) pour un ensemble de valeurs (xi, yi)1 ≤ i ≤ n. Les variables xi et yi peuvent être des scalaires ou des vecteurs. Par « ajuster », il faut comprendre : déterminer les paramètres de la loi, (a1, ..., am), afin de minimiser S = ||ri||, avec : ri = yi - ƒa1, ..., am(xi). ||...|| est une norme. On utilise en général la norme euclidienne, ou norme l2 ; on parle alors de méthode des moindres carrés.
RpropRprop, short for resilient backpropagation, is a learning heuristic for supervised learning in feedforward artificial neural networks. This is a first-order optimization algorithm. This algorithm was created by Martin Riedmiller and Heinrich Braun in 1992. Similarly to the Manhattan update rule, Rprop takes into account only the sign of the partial derivative over all patterns (not the magnitude), and acts independently on each "weight".
Prévision météorologiqueLa prévision météorologique est une application des connaissances en météorologie et des techniques modernes de prises de données et d’informatique pour prévoir l’état de l’atmosphère à un temps ultérieur. L’histoire de la prévision du temps remonte aux temps immémoriaux avec les oracles et devins mais la science moderne date vraiment de la fin du et du début du . Elle s’est cependant affirmée depuis la Seconde Guerre mondiale alors que les moyens techniques comme le radar et les communications modernes ont rendu l’accès aux données plus rapide et plus nombreuses.
Atmospheric modelIn atmospheric science, an atmospheric model is a mathematical model constructed around the full set of primitive, dynamical equations which govern atmospheric motions. It can supplement these equations with parameterizations for turbulent diffusion, radiation, moist processes (clouds and precipitation), heat exchange, soil, vegetation, surface water, the kinematic effects of terrain, and convection. Most atmospheric models are numerical, i.e. they discretize equations of motion.
Tropical cyclone forecast modelA tropical cyclone forecast model is a computer program that uses meteorological data to forecast aspects of the future state of tropical cyclones. There are three types of models: statistical, dynamical, or combined statistical-dynamic. Dynamical models utilize powerful supercomputers with sophisticated mathematical modeling software and meteorological data to calculate future weather conditions. Statistical models forecast the evolution of a tropical cyclone in a simpler manner, by extrapolating from historical datasets, and thus can be run quickly on platforms such as personal computers.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Mean absolute percentage errorThe mean absolute percentage error (MAPE), also known as mean absolute percentage deviation (MAPD), is a measure of prediction accuracy of a forecasting method in statistics. It usually expresses the accuracy as a ratio defined by the formula: where At is the actual value and Ft is the forecast value. Their difference is divided by the actual value At. The absolute value of this ratio is summed for every forecasted point in time and divided by the number of fitted points n.
Air pollution forecastingAir pollution forecasting is the application of science and technology to predict the composition of the air pollution in the atmosphere for a given location and time. An algorithm prediction of the pollutant concentrations can be translated into air quality index, same as actual measurements. Countries and cities are given forecasts by state and local government organizations, as well as private companies like Airly, AirVisual, Aerostate, Ambee, BreezoMeter, PlumeLabs, and DRAXIS that provide air pollution forecasts.