Dimension fractaleEn géométrie fractale, la dimension fractale, D, est une grandeur qui a vocation à traduire la façon qu'a un ensemble fractal de remplir l'espace, à toutes les échelles. Dans le cas des fractales, elle est non entière et supérieure à la dimension topologique. Ce terme est un terme générique qui recouvre plusieurs définitions. Chacune peut donner des résultats différents selon l'ensemble considéré, il est donc essentiel de mentionner la définition utilisée lorsqu'on valorise la dimension fractale d'un ensemble.
Fractalevignette|Exemple de figure fractale (détail de l'ensemble de Mandelbrot)|alt=Exemple de figure fractale (détail de l'ensemble de Mandelbrot). vignette|Ensemble de Julia en . Une figure fractale est un objet mathématique qui présente une structure similaire à toutes les échelles. C'est un objet géométrique « infiniment morcelé » dont des détails sont observables à une échelle arbitrairement choisie. En zoomant sur une partie de la figure, il est possible de retrouver toute la figure ; on dit alors qu’elle est « auto similaire ».
Fractal curveA fractal curve is, loosely, a mathematical curve whose shape retains the same general pattern of irregularity, regardless of how high it is magnified, that is, its graph takes the form of a fractal. In general, fractal curves are nowhere rectifiable curves — that is, they do not have finite length — and every subarc longer than a single point has infinite length. A famous example is the boundary of the Mandelbrot set. Fractal curves and fractal patterns are widespread, in nature, found in such places as broccoli, snowflakes, feet of geckos, frost crystals, and lightning bolts.
Nombre complexeEn mathématiques, l'ensemble des nombres complexes est actuellement défini comme une extension de l'ensemble des nombres réels, contenant en particulier un nombre imaginaire noté i tel que i = −1. Le carré de (−i) est aussi égal à −1 : (−i) = −1. Tout nombre complexe peut s'écrire sous la forme x + i y où x et y sont des nombres réels. Les nombres complexes ont été progressivement introduit au par l’école mathématique italienne (Jérôme Cardan, Raphaël Bombelli, Tartaglia) afin d'exprimer les solutions des équations du troisième degré en toute généralité par les formules de Cardan, en utilisant notamment des « nombres » de carré négatif.
Analyse fractalethumb|Ramification fractale d'un arbre L'analyse fractale est la modélisation de données dont la fractalité est la propriété inhérente. La notion-clé est celle de fractal qui remonte à Benoît Mandelbrot qui l'avait introduite comme description mathématique des objets râpeux. L'analyse fractale s'applique aux systèmes physiques qui se distinguent par une similarité de comportements au travers d'une multitude d'échelles ou, dans des cas les plus prononcés, par l'autosimilarité où cette similarité est conservée au travers d'une infinitude d'échelles.
Analyse complexeL'analyse complexe est un domaine des mathématiques traitant des fonctions à valeurs complexes (ou, plus généralement, à valeurs dans un C-espace vectoriel) et qui sont dérivables par rapport à une ou plusieurs variables complexes. Les fonctions dérivables sur un ouvert du plan complexe sont appelées holomorphes et satisfont de nombreuses propriétés plus fortes que celles vérifiées par les fonctions dérivables en analyse réelle. Entre autres, toute fonction holomorphe est analytique et vérifie le principe du maximum.
Régularité (perception)thumb|Carreaux de faïence d'Iznik (seconde moitié du , Musée du Louvre, Département des arts de l'Islam). La nature, les arts et techniques et les abstractions peuvent présenter des régularités, qu'on désigne en anglais par le mot pattern. La traduction de pattern en français varie beaucoup selon le contexte. On peut le traduire notamment par patron (dont il est issu étymologiquement), modèle, forme, motif, schéma, structure ou régularité. Les éléments d'une régularité se répètent de façon prévisible.
Analyse spatialevignette|200px|Carte de cas de choléra pendant l'épidémie de 1854 à Londres L'analyse spatiale est une approche géographique qui étudie les localisations et les interactions spatiales en tant que composantes actives des fonctionnements sociétaux. Elle part du postulat selon lequel l'espace est acteur organisé. C'est une science nomothétique donc elle vise à proposer une approche modélisée de l'espace géographique en mettant en évidence des formes récurrentes d'organisation spatiales et des théories, notamment à travers diverses notions-clés : distance, réseaux, structure, .
Système d'information géographiqueUn système d'information géographique ou SIG (en anglais, geographic information system ou GIS) est un système d'information conçu pour recueillir, stocker, traiter, analyser, gérer et présenter tous les types de données spatiales et géographiques. L’acronyme SIG est parfois utilisé pour définir les « sciences de l’information géographique » ou « études sur l’information géospatiale ». Cela se réfère aux carrières ou aux métiers qui impliquent l'usage de systèmes d’information géographique et, dans une plus large mesure, qui concernent les disciplines de la géo-informatique (ou géomatique).
Fractal expressionismFractal expressionism is used to distinguish fractal art generated directly by artists from fractal art generated using mathematics and/or computers. Fractals are patterns that repeat at increasingly fine scales and are prevalent in natural scenery (examples include clouds, rivers, and mountains). Fractal expressionism implies a direct expression of nature's patterns in an art work. The initial studies of fractal expressionism focused on the poured paintings by Jackson Pollock (1912-1956), whose work has traditionally been associated with the abstract expressionist movement.