Théorie des ensemblesLa théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du . La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes... C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.
Choix modalLe choix modal est le choix qu'effectuent les voyageurs, ou les personnes responsables du transport de marchandises, sur le mode utilisé pour effectuer un trajet entre deux points. Lorsqu'une modification des conditions de transport intervient sur le mode habituellement utilisé par ces voyageurs ou marchandises, ou qu'une amélioration d'un mode concurrent intervient, un phénomène de report modal (ou transfert modal) peut intervenir. L'analyse du choix modal est utilisée dans la planification des infrastructures de transport.
Axiome du choix globalEn mathématiques, plus précisément dans les théories utilisant des classes, l'axiome du choix global est un renforcement de l'axiome du choix qui s'applique à des classes propres d'ensembles ou d'ensembles d'ensembles. De manière informelle, il affirme que l'on peut choisir simultanément un élément dans tous les ensembles non-vides. L'axiome du choix global affirme qu'il existe une fonction de choix global τ, c'est-à-dire une fonction telle que, pour tout ensemble non-vide z, τ(z) est un élément de z.
Probabilité a prioriDans le théorème de Bayes, la probabilité a priori (ou prior) désigne une probabilité se fondant sur des données ou connaissances antérieures à une observation. Elle s'oppose à la probabilité a posteriori (ou posterior) correspondante qui s'appuie sur les connaissances postérieures à cette observation. Le théorème de Bayes s'énonce de la manière suivante : si . désigne ici la probabilité a priori de , tandis que désigne la probabilité a posteriori, c'est-à-dire la probabilité conditionnelle de sachant .
ChoixUn choix résulte de la décision d'un individu ou d'un groupe confronté à une situation ou à un système offrant une ou plusieurs options. Le terme « choix » pouvant désigner le processus par lequel cette opération est menée à bien et/ou le résultat de ladite opération : en philosophie, la question de savoir si un individu effectue des choix librement ou est déterminé renvoie au problème de l'existence ou non du libre arbitre. De plus, l’expression « être un Renaud » prend de l’ampleur dans le langage utilisé par les 18-25ans.
Price ceilingA price ceiling is a government- or group-imposed price control, or limit, on how high a price is charged for a product, commodity, or service. Governments use price ceilings to protect consumers from conditions that could make commodities prohibitively expensive. Such conditions can occur during periods of high inflation, in the event of an investment bubble, or in the event of monopoly ownership of a product, all of which can cause problems if imposed for a long period without controlled rationing, leading to shortages.
Discrimination par les prixvignette|Illustration de la discrimination par les prix des articles La discrimination par les prix désigne la modulation par agent des prix de son offre en fonction des caractéristiques connues ou supposées de la demande. Classiquement, on distingue trois types de discriminations par les prix en fonction de l'information dont dispose l'agent discriminateur : Discrimination de premier type, ou discrimination parfaite : le prix est fixé en fonction de la qualité de l'acheteur.
Information de FisherEn statistique, l'information de Fisher quantifie l'information relative à un paramètre contenue dans une distribution. Elle est définie comme l'espérance de l'information observée, ou encore comme la variance de la fonction de score. Dans le cas multi-paramétrique, on parle de matrice d'information de Fisher. Elle a été introduite par R.A. Fisher. Soit f(x ; θ) la distribution de vraisemblance d'une variable aléatoire X (qui peut être multidimensionnelle), paramétrée par θ.
MéthodologieLa méthodologie est l'étude de l'ensemble des méthodes scientifiques. Elle peut être considérée comme la science de la méthode, ou « méthode des méthodes » (comme il y a une métalinguistique ou linguistique des linguistiques et une métamathématique ou mathématique des mathématiques). Alors, la méthodologie est une classe de méthodes, une sorte de boîte à outils où chaque outil est une méthode de la même catégorie, comme il y a une méthodologie analytique du déterminisme causal et une méthodologie systémique finaliste de la téléologie.
Jeffreys priorIn Bayesian probability, the Jeffreys prior, named after Sir Harold Jeffreys, is a non-informative prior distribution for a parameter space; its density function is proportional to the square root of the determinant of the Fisher information matrix: It has the key feature that it is invariant under a change of coordinates for the parameter vector . That is, the relative probability assigned to a volume of a probability space using a Jeffreys prior will be the same regardless of the parameterization used to define the Jeffreys prior.