Vitesse de convergence des suitesEn analyse numérique — une branche des mathématiques — on peut classer les suites convergentes en fonction de leur vitesse de convergence vers leur point limite. C'est une manière d'apprécier l'efficacité des algorithmes qui les génèrent. Les suites considérées ici sont convergentes sans être stationnaires (tous leurs termes sont même supposés différents du point limite). Si une suite est stationnaire, tous ses éléments sont égaux à partir d'un certain rang et il est alors normal de s'intéresser au nombre d'éléments différents du point limite.
Convergence absolueEn mathématiques, une série numérique réelle ou complexe converge absolument si, par définition, la série des valeurs absolues (ou des modules) est convergente. Cette définition peut être étendue aux séries à valeurs dans un espace vectoriel normé et complet, soit un espace de Banach. Dans tous ces contextes, cette condition est suffisante pour assurer la convergence de la série elle-même. Par analogie, l'intégrale d'une fonction à valeurs réelles ou complexes converge absolument si, par définition, l'intégrale de la valeur absolue (ou du module) de la fonction est convergente (fonction dans L1).
Arguments sur l'existence de DieuLes arguments sur l'existence de Dieu, en faveur ou en défaveur de son existence, ont été nombreux au cours de l'histoire de la philosophie et de la théologie. Le Dieu dont il est question ici est ce que l'on nomme parfois le Dieu des philosophes, à savoir le Dieu des grandes religions du Livre (judaïsme, christianisme, islam), tel qu'il a été conceptualisé par les philosophes. Ses attributs sont d'être le créateur du monde, omniscient, omnipotent, omniprésent et bon.
ExistenceLe terme d'existence en soi est ambigu, il recouvre de multiples sens. Dans le langage trivial il désigne le fait d'être, d'être de manière réelle, il est ainsi utilisé dans un usage tout aussi indéterminé chez beaucoup de philosophes comme équivalent au terme d'« être ». Outre le fait d'exister, il intervient, indique le Petit Larousse, dans plusieurs expressions courantes pour signaler une durée (une longue existence), au sens de vie (être las de son existence), un mode de vie (changer d'existence), etc.
Problème du malEn philosophie, plus spécifiquement en théologie, le problème du mal est la question de savoir comment concilier l'existence du mal et celle d'un Dieu omniscient, omnipotent et bon. On peut distinguer deux formes du problème du mal : le problème logique et le problème probant. Le problème logique ou a priori cherche à démontrer qu'il est logiquement impossible que Dieu et le mal coexistent. Ce problème part du principe que les théistes acceptent les propositions suivantes, soit que Dieu existe, que Dieu est omniscient, que Dieu est omnipotent, que Dieu est bon et que le mal existe.
Curve-shortening flowIn mathematics, the curve-shortening flow is a process that modifies a smooth curve in the Euclidean plane by moving its points perpendicularly to the curve at a speed proportional to the curvature. The curve-shortening flow is an example of a geometric flow, and is the one-dimensional case of the mean curvature flow. Other names for the same process include the Euclidean shortening flow, geometric heat flow, and arc length evolution. As the points of any smooth simple closed curve move in this way, the curve remains simple and smooth.
Regular PolytopesRegular Polytopes est un livre de mathématiques écrit par le mathématicien canadien Harold Scott MacDonald Coxeter. Initialement publié en 1947, le livre a été mis à jour et réédité en 1963 et 1973. Le livre est une étude complète de la géométrie des polytopes réguliers, c'est-à-dire les polygones et polyèdres réguliers ainsi que leurs généralisations aux dimensions supérieures. Provenant d'un essai intitulé L'Analogie dimensionnelle écrit en 1923, la première édition du livre a pris à Coxeter vingt-quatre ans.
Mean curvature flowIn the field of differential geometry in mathematics, mean curvature flow is an example of a geometric flow of hypersurfaces in a Riemannian manifold (for example, smooth surfaces in 3-dimensional Euclidean space). Intuitively, a family of surfaces evolves under mean curvature flow if the normal component of the velocity of which a point on the surface moves is given by the mean curvature of the surface. For example, a round sphere evolves under mean curvature flow by shrinking inward uniformly (since the mean curvature vector of a sphere points inward).
Équations de PitzerLes équations de Pitzer sont une application de la théorie thermodynamique destinées à calculer les coefficients osmotiques et les coefficients d'activité moyens d'ions en solution. Elles caractérisent les interactions entre électrolytes et solvant. Décrites par le chimiste Kenneth Pitzer, elles sont plus thermodynamiquement rigoureuses que la théorie SIT ou l'équation de Bromley, et leur domaine de validité est plus vaste que celui de la théorie de Debye-Hückel, mais les paramètres de ce modèle sont plus difficiles à déterminer expérimentalement.