Neuronethumb|537x537px|Schéma complet d’un neurone. Un neurone, ou une cellule nerveuse, est une cellule excitable constituant l'unité fonctionnelle de la base du système nerveux. Les neurones assurent la transmission d'un signal bioélectrique appelé influx nerveux. Ils ont deux propriétés physiologiques : l'excitabilité, c'est-à-dire la capacité de répondre aux stimulations et de convertir celles-ci en impulsions nerveuses, et la conductivité, c'est-à-dire la capacité de transmettre les impulsions.
Maladie neurodégénérativeLes maladies neurodégénératives, telles que la maladie d'Alzheimer, la maladie à corps de Lewy, la maladie de Parkinson, la maladie de Huntington, l'atrophie corticale postérieure ou encore la sclérose latérale amyotrophique sont des maladies chroniques invalidantes à évolution lente et discrète. Elles provoquent généralement une détérioration du fonctionnement des cellules nerveuses, en particulier les neurones, pouvant conduire à la mort cellulaire (ou neurodégénérescence).
AxoneLaxone, ou fibre nerveuse, est le prolongement du neurone qui conduit le signal électrique du corps cellulaire vers les zones synaptiques. Le long de l'axone, ce signal est constitué de potentiels d'action. Les autres prolongements du neurone sont les dendrites qui conduisent le signal des synapses au corps cellulaire. Les neurones ont le plus souvent un seul axone et plusieurs dendrites. Néanmoins, la terminaison de l'axone est très ramifiée — on parle d'arborisation terminale — ce qui lui permet de contacter plusieurs autres neurones avec la même information.
Sclérose latérale amyotrophiqueLa sclérose latérale amyotrophique ou SLA, également appelée dans le monde francophone maladie de Charcot (maladie de Lou Gehrig ou ALS en anglais), est une maladie neurodégénérative des motoneurones de l'adulte. Elle est caractérisée par une dégénérescence progressive des motoneurones du cortex cérébral avec destruction consécutive du faisceau pyramidal (atteinte du premier motoneurone) et de ceux de la corne antérieure de la moelle épinière avec destruction des unités motrices associées (atteinte du deuxième motoneurone).
Alpha motor neuronAlpha (α) motor neurons (also called alpha motoneurons), are large, multipolar lower motor neurons of the brainstem and spinal cord. They innervate extrafusal muscle fibers of skeletal muscle and are directly responsible for initiating their contraction. Alpha motor neurons are distinct from gamma motor neurons, which innervate intrafusal muscle fibers of muscle spindles. While their cell bodies are found in the central nervous system (CNS), α motor neurons are also considered part of the somatic nervous system—a branch of the peripheral nervous system (PNS)—because their axons extend into the periphery to innervate skeletal muscles.
Upper motor neuronUpper motor neurons (UMNs) is a term introduced by William Gowers in 1886. They are found in the cerebral cortex and brainstem and carry information down to activate interneurons and lower motor neurons, which in turn directly signal muscles to contract or relax. UMNs in the cerebral cortex are the main source of voluntary movement. They are the larger pyramidal cells in the cerebral cortex. There is a type of giant pyramidal cell called Betz cells and are found just below the surface of the cerebral cortex within layer V of the primary motor cortex.
MotoneuroneLes motoneurones constituent la voie de sortie du système nerveux central ou la voie finale de tout acte moteur. Les corps cellulaires des motoneurones sont situés soit dans le tronc cérébral, soit dans la corne ventrale de la substance grise de la moelle épinière. Chaque motoneurone possède un axone qui part du système nerveux central pour innerver les fibres musculaires d'un muscle. L'ensemble constitué par un motoneurone et les fibres musculaires qu'il innerve constitue une unité motrice.
NeurodéveloppementLe neurodéveloppement (ou développement neural) désigne la mise en place du système nerveux au cours de l'embryogenèse et aux stades suivant de l'ontogenèse d'un organisme animal. Son étude repose sur une approche combinant neurosciences et biologie du développement afin d'en décrire les mécanismes moléculaires et cellulaires. La neurogenèse est le mécanisme central du neurodéveloppement.
Flux axoplasmiqueLe flux axoplasmique ou transport axonal désigne le transport des macromolécules, et en particulier des protéines, le long de l'axone des neurones, soit dans le sens antérograde, du corps cellulaire vers la synapse, soit dans le sens inverse, dit rétrograde. Ce double flux directionnel a été mis en évidence en 1971 par Liliana Lubińska. Suivant les mécanismes impliqués, ces flux peuvent être rapides (quelques microns par seconde) ou lents (environ cent fois moins vite).
Réticulum endoplasmiqueEn biologie cellulaire, le réticulum endoplasmique (forme abrégée : RE) est un organite présent dans les cellules eucaryotes et lié à la membrane nucléaire. Il synthétise les protéines, produit des macromolécules et transfère des substances vers l'appareil de Golgi via des vésicules. C'est l'organite se situant à la base du système endomembranaire des cellules eucaryotes. Il faut tout de même préciser que les protéines synthétisées dans le RE Granuleux sortent immatures de celui-ci et subissent donc des lourdes modifications dans l'appareil de Golgi afin d'obtenir une protéine mature.