AC OPF in Radial Distribution Networks - Parts I,II
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...
We propose a distributed design method for decentralized control by exploiting the underlying sparsity properties of the problem. Our method is based on chordal decomposition of sparse block matrices and the alternating direction method of multipliers (ADM ...
This paper proposes a generic and unified model of the power flow (PF) problem for multiterminal hybrid AC/DC networks. The proposed model is an extension of the standard AC-PF. The DC network is treated as an AC one and, in addition to the Slack, PV and P ...
We present a strikingly simple proof that two rules are sufficient to automate gradient descent: 1) don’t increase the stepsize too fast and 2) don’t overstep the local curvature. No need for functional values, no line search, no information about the func ...
During the last decade, distribution networks have experienced essential changes driven by the integration of renewable-energy sources, batteries, electric-vehicle charging stations, etc. This results in not only opportunities, but also operational problem ...
We consider the problem of finding a saddle point for the convex-concave objective minxmaxyf(x)+⟨Ax,y⟩−g∗(y), where f is a convex function with locally Lipschitz gradient and g is convex and possibly non-smooth. We propose an ...
The objective of this dissertation is to develop data-driven frequency-domain methods for designing robust controllers through the use of convex optimization algorithms. Many of today's industrial processes are becoming more complex, and modeling accurate ...
In this study, we developed a robust inversion algorithm to estimate the Neurite Orientation Dispersion and Density Imaging (NODDI) model. It is based on the Accelerated Microstructure Imaging via Convex Optimization (AMICO) framework. However, in contrast ...
In modern-data analysis applications, the abundance of data makes extracting meaningful information from it challenging, in terms of computation, storage, and interpretability. In this setting, exploiting sparsity in data has been essential to the developm ...
The paper describes the formulation and application of an Optimal Power Flow (OPF)-driven Under Frequency Load Shedding (UFLS) scheme in low-inertia power grids hosting large-scale battery energy storage systems. Thanks to the accurate prediction of the sy ...