Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We consider the problem of finding a saddle point for the convex-concave objective , where is a convex function with locally Lipschitz gradient and is convex and possibly non-smooth. We propose an adaptive version of the Condat-Vũ algorithm, which alternates between primal gradient steps and dual proximal steps. The method achieves stepsize adaptivity through a simple rule involving and the norm of recently computed gradients of . Under standard assumptions, we prove an ergodic convergence rate. Furthermore, when is also locally strongly convex and has full row rank we show that our method converges with a linear rate. Numerical experiments are provided for illustrating the practical performance of the algorithm.