Publication

Fast and robust estimation of NODDI parameters using non-Gaussian noise models and spatial regularization

Résumé

In this study, we developed a robust inversion algorithm to estimate the Neurite Orientation Dispersion and Density Imaging (NODDI) model. It is based on the Accelerated Microstructure Imaging via Convex Optimization (AMICO) framework. However, in contrast to AMICO, the proposed method relies on realistic MRI noise models. Moreover, it allows to take into account the underlying spatial continuity of the brain image by including a total variation regularization term. In simulated data the new method was effective in reducing the outliers, producing results more close to the ground-truth and with lower variability. The method was also evaluated on real data.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.