AntimatièreEn physique des particules, l'antimatière est l'ensemble des antiparticules qui ont la même masse (la masse d'une antiparticule n'a cependant jamais pu être mesurée en 2018) et le même spin, mais des charges, nombres baryoniques et nombres leptoniques opposés aux particules ordinaires. Il est supposé que l'antimatière n'existe qu'en quantités infimes dans l'Univers local, soit dans les rayons cosmiques, soit produite en laboratoire. Les travaux sur l'antimatière consistent en grande partie à expliquer la rareté de l'antimatière par rapport à la matière.
Création de pairesUne création de paires est la création d’un couple particule-antiparticule à partir d’un photon (ou d’un autre boson de charge neutre) ou d’une particule chargée se déplaçant à une vitesse relativiste. La production fait référence à la création d’une particule élémentaire et de son antiparticule, le plus souvent à partir d’un photon (ou un autre boson neutre). Cela est permis dès lors qu’il y a suffisamment d’énergie disponible dans le centre de masse pour créer la paire — au moins l’énergie de masse au repos totale des deux particules — et que la situation permet la conservation de l’énergie et de la quantité de mouvement.
Atome exotiqueUn atome exotique se représente comme un atome « normal » dans lequel au moins une particule subatomique a été remplacée par une autre particule de même charge électrique : par exemple un pion négatif π− ou un muon à la place d'un électron. De telles configurations sont très instables, de sorte que ces atomes exotiques n'ont qu'une durée de vie très brève. Un atome muonique résulte du remplacement d'un électron par un muon, qui est un lepton comme l'électron.
Annihilation (physique)En physique, l’annihilation ou anéantissement correspond à la collision entre une particule sous-atomique et son antiparticule respective. Puisque l’énergie et la quantité de mouvement doivent être conservées, les particules ne se muent pas en rien, mais plutôt en nouvelles particules. Les antiparticules possèdent des nombres quantiques exactement opposés à ceux des particules, donc la somme des nombres quantiques du pair égale zéro.
NucléonLe terme nucléon désigne de façon générique les composants du noyau atomique, c'est-à-dire les protons et les neutrons qui sont tous deux des baryons. Le nombre de nucléons par atome est généralement noté « A », et appelé « nombre de masse ». Jusque dans les années 1960, les nucléons étaient considérés comme des particules élémentaires. Il est désormais connu que ce sont des particules composées de quarks et de gluons. Les propriétés de ces particules sont régies en grande partie par l'interaction forte.
Interaction gravitationnelle de l'antimatièreL'interaction gravitationnelle de l'antimatière avec la matière ou avec l'antimatière n'a pas été observée par les physiciens dans des conditions permettant d'en tirer des conclusions. Un consensus écrasant règne parmi les physiciens selon lequel l'antimatière attirerait aussi bien la matière que l'antimatière de la même façon que la matière attire la matière (et l'antimatière). Cependant, il existe aussi une volonté très affirmée d'en obtenir des preuves expérimentales, étant convenu qu'un consensus en sciences n'est rien d'autre qu'une hypothèse ouverte aux falsifications.
ProtonLe proton est une particule subatomique portant une charge électrique élémentaire positive. Les protons sont présents dans les noyaux atomiques, généralement liés à des neutrons par l'interaction forte (la seule exception, mais celle du nucléide le plus abondant de l'univers, est le noyau d'hydrogène ordinaire (protiumH), un simple proton). Le nombre de protons d'un noyau est représenté par son numéro atomique Z. Le proton n'est pas une particule élémentaire mais une particule composite.
Antiparticulevignette|droite|Schéma comparant la charge des particules (à gauche) et celle des antiparticules (à droite) ; avec de haut en bas : électron et positron, proton et antiproton, neutron et antineutron. L'antiparticule est un type de particule élémentaire du modèle standard de masse et spin égaux à ceux de la particule correspondante, mais de nombres quantiques opposés. Par exemple, l’électron et le positron ont la même masse () et le même spin (1/2) mais des nombres quantiques opposés (par exemple, q = pour l'électron, q = pour le positron).
Violation de CPEn physique des particules, la violation de CP est une violation de la symétrie CP, c'est-à-dire de la combinaison de la symétrie C (symétrie de conjugaison de charge) et de la symétrie P (symétrie de parité). La symétrie CP indique que les lois de la physique devraient être les mêmes si une particule est échangée avec son antiparticule (symétrie C) tandis que ses coordonnées spatiales sont inversées (symétrie P, ou « miroir »).
Hadronvignette|Contenu en quarks de quelques hadrons. En physique des particules, un hadron est une particule composite, composée de particules subatomiques régies par l'interaction forte. Par exemple, les protons ou les neutrons sont des hadrons. Dans le modèle standard de la physique des particules, les hadrons sont composés de quarks, d'anti-quarks et de gluons. Les particules constituant un hadron ont été appelées de manière générique partons, terme en désuétude à ce jour.