Moment magnétiqueEn physique, le moment magnétique est une grandeur vectorielle qui permet de caractériser l'intensité d'une source magnétique. Cette source peut être un courant électrique, ou bien un objet aimanté. L'aimantation est la distribution spatiale du moment magnétique. Le moment magnétique d'un corps se manifeste par la tendance qu'a ce corps à s'aligner dans le sens d'un champ magnétique, c'est par exemple le cas de l'aiguille d'une boussole : le moment que subit l'objet est égal au produit vectoriel de son moment magnétique par le champ magnétique dans lequel il est placé.
Magnetic domainA magnetic domain is a region within a magnetic material in which the magnetization is in a uniform direction. This means that the individual magnetic moments of the atoms are aligned with one another and they point in the same direction. When cooled below a temperature called the Curie temperature, the magnetization of a piece of ferromagnetic material spontaneously divides into many small regions called magnetic domains. The magnetization within each domain points in a uniform direction, but the magnetization of different domains may point in different directions.
Susceptibilité magnétiqueLa susceptibilité magnétique désigne une propriété d'un matériau qui caractérise la faculté de celui-ci à s'aimanter sous l'effet d'une excitation magnétique émise par un champ. C'est une grandeur sans dimension qu'on note en général par le symbole , ou simplement s'il n'y a pas d'ambiguïté avec la susceptibilité électrique dans le texte. Tout matériau est composé au niveau microscopique d'atomes liés ensemble, chacun de ces atomes pouvant être vu comme un aimant élémentaire si l'on ne s'intéresse qu'aux propriétés magnétiques.
Anisotropie magnétiqueUne anisotropie magnétique est présente lorsque les propriétés magnétiques d'un système sont orientées selon des axes privilégiés. C'est le cas dans les matériaux ferromagnétiques, où l’aimantation suit des directions privilégiées appelées axes de facile aimantation. Dans les matériaux cristallins, il existe des directions selon lesquelles il est facile d'aimanter le cristal (axes faciles), et des directions de difficile aimantation, on parle d'anisotropie magnéto-cristalline.
FerromagnétismeLe ferromagnétisme est le mécanisme fondamental par lequel certains matériaux (fer, cobalt, nickel...) sont attirés par des aimants ou forment des aimants permanents. On distingue en physique différents types de magnétismes. Le ferromagnétisme (qui inclut le ferrimagnétisme) se trouve être celui à l’origine des champs magnétiques les plus importants : c’est celui qui crée des forces suffisamment importantes pour être senties et qui est responsable du phénomène bien connu de magnétisme dans les aimants de la vie quotidienne.
Orbitevignette|La Station spatiale internationale en orbite au-dessus de la Terre. En mécanique céleste et en mécanique spatiale, une orbite () est la courbe fermée représentant la trajectoire que dessine, dans l'espace, un objet céleste sous l'effet de la gravitation et de forces d'inertie. Une orbite est ainsi la courbe tracée par une trajectoire périodique. Dans le Système solaire, la Terre, les autres planètes, les astéroïdes et les comètes sont en orbite autour du Soleil.
Magnetocrystalline anisotropyIn physics, a ferromagnetic material is said to have magnetocrystalline anisotropy if it takes more energy to magnetize it in certain directions than in others. These directions are usually related to the principal axes of its crystal lattice. It is a special case of magnetic anisotropy. In other words, the excess energy required to magnetize a specimen in a particular direction over that required to magnetize it along the easy direction is called crystalline anisotropy energy.
Orbitale atomiqueredresse=1.5|vignette|Représentation des nuages de probabilité de présence de l'électron (en haut) et des isosurfaces à 90 % (en bas) pour les orbitales 1s, 2s et 2p. Dans le cas des orbitales 2p ( ), les trois isosurfaces 2p, 2p et 2p représentées correspondent à , et . Les couleurs indiquent la phase de la fonction d'onde : positive en rouge, négative en bleu. En mécanique quantique, une orbitale atomique est une fonction mathématique qui décrit le comportement ondulatoire d'un électron ou d'une paire d'électrons dans un atome.
MagnétismeLe magnétisme représente un ensemble de phénomènes physiques dans lesquels les objets exercent des forces attractives ou répulsives sur d'autres matériaux. Les courants électriques et les moments magnétiques des particules élémentaires fondamentales sont à l’origine du champ magnétique qui engendre ces forces. Tous les matériaux sont influencés, de manière plus ou moins complexe, par la présence d'un champ magnétique, et l’état magnétique d'un matériau dépend de sa température (et d'autres variables telles que la pression et le champ magnétique extérieur) de sorte qu'un matériau peut présenter différentes formes de magnétisme selon sa température.
Dipôle magnétiquevignette|Dipôle magnétique de la Terre Un dipôle magnétique est l'équivalent pour le champ magnétique de ce qu'est un dipôle électrostatique pour le champ électrique. Il est entièrement caractérisé par le vecteur moment magnétique (ou moment dipolaire magnétique), l'équivalent pour le magnétisme de ce qu'est le moment dipolaire pour l'électrostatique. La représentation matérielle la plus simple d'un dipôle magnétique est une boucle de courant, c'est-à-dire un courant électrique circulaire.