In this paper, we have investigated the redundancy in array of Memristive-Biosensors and find optimum number for devices to accomplish reliable biodetection. Our results lead less expensive sensor and reduce the low-reproducibility of this memristive method for the detection of rabbit antigen. Several experiments have been performed with 17 memristive biosensors in several conditions. These conditions give us relevant information about the overall behavior of memristor biosensor’s array, after functionalization with antibody and exposure to antigen. The statistics made on different conditions, related to the standard deviation and the mean value of voltage gap, prove that such a sensor, with a minimum memristive biosensors in array, can be counted as reliable sensor for the detection of antigen.
Nicolas Lawrence Etienne Longeard
Athanasios Nenes, Romanos Foskinis, Kunfeng Gao
Matthias Finger, Qian Wang, Yiming Li, Varun Sharma, Konstantin Androsov, Jan Steggemann, Xin Chen, Rakesh Chawla, Matteo Galli, Jian Wang, João Miguel das Neves Duarte, Tagir Aushev, Matthias Wolf, Yi Zhang, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Abhisek Datta, Federica Legger, Gabriele Grosso, Anna Mascellani, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ioannis Evangelou, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Hui Wang, Seungkyu Ha, Pratyush Das, Anton Petrov, Xin Sun, Valérie Scheurer, Muhammad Ansar Iqbal