Segmentation d'imageLa segmentation d'image est une opération de s consistant à détecter et rassembler les pixels suivant des critères, notamment d'intensité ou spatiaux, l'image apparaissant ainsi formée de régions uniformes. La segmentation peut par exemple montrer les objets en les distinguant du fond avec netteté. Dans les cas où les critères divisent les pixels en deux ensembles, le traitement est une binarisation. Des algorithmes sont écrits comme substitut aux connaissances de haut niveau que l'homme mobilise dans son identification des objets et structures.
Object co-segmentationIn computer vision, object co-segmentation is a special case of , which is defined as jointly segmenting semantically similar objects in multiple images or video frames. It is often challenging to extract segmentation masks of a target/object from a noisy collection of images or video frames, which involves object discovery coupled with . A noisy collection implies that the object/target is present sporadically in a set of images or the object/target disappears intermittently throughout the video of interest.
Oculométrievignette|Vidéo de l'étude du mouvement de l'œil avec la méthode oculométrique. L’oculométrie (en anglais pour « suivi oculaire », ou pour « suivi du regard ») regroupe un ensemble de techniques permettant d'enregistrer les mouvements oculaires. Les oculomètres les plus courants analysent des images de l'œil humain enregistrées par une caméra, souvent en lumière infrarouge, pour calculer la direction du regard du sujet. En fonction de la précision souhaitée, différentes caractéristiques de l'œil sont analysées.
Vision par ordinateurLa vision par ordinateur est un domaine scientifique et une branche de l’intelligence artificielle qui traite de la façon dont les ordinateurs peuvent acquérir une compréhension de haut niveau à partir d's ou de vidéos numériques. Du point de vue de l'ingénierie, il cherche à comprendre et à automatiser les tâches que le système visuel humain peut effectuer. Les tâches de vision par ordinateur comprennent des procédés pour acquérir, traiter, et « comprendre » des images numériques, et extraire des données afin de produire des informations numériques ou symboliques, par ex.
SaillanceLa saillance (de l'anglais salience, construit sur salient, du français saillant, lui-même du latin saliens, « qui saute ») d'une chose quelconque est le fait qu'elle attire l'attention ; plus précisément, la mesure dans laquelle elle retient l'attention par rapport aux autres choses présentes dans son environnement (y compris des choses similaires). Par exemple, un mot peut être mieux perçu que d'autres dans un message (saillance linguistique).
Harris affine region detectorIn the fields of computer vision and , the Harris affine region detector belongs to the category of feature detection. Feature detection is a preprocessing step of several algorithms that rely on identifying characteristic points or interest points so to make correspondences between images, recognize textures, categorize objects or build panoramas. The Harris affine detector can identify similar regions between images that are related through affine transformations and have different illuminations.
Medical image computingMedical image computing (MIC) is an interdisciplinary field at the intersection of computer science, information engineering, electrical engineering, physics, mathematics and medicine. This field develops computational and mathematical methods for solving problems pertaining to medical images and their use for biomedical research and clinical care. The main goal of MIC is to extract clinically relevant information or knowledge from medical images.
Mouvements oculaires lors de la lectureLe traitement visuel des mots implique des mouvements oculaires lors de la lecture. L'œil humain possède une acuité maximale sur une petite zone du champ visuel correspondant à la partie la plus sensible de la rétine, la fovéa. De fréquents mouvements oculaires lors de la lecture permettent de repositionner cette zone d'un mot à l'autre. Les mouvements oculaires lors de la perception visuelle se font à 2 à 4 fixations par seconde. Cela est aussi valable pour la lecture.
Système visuel humainLe est l'ensemble des organes participant à la perception visuelle humaine, de la rétine au système sensori-moteur. Son rôle est de percevoir et d'interpréter deux images en deux dimensions en une image en trois dimensions. Il est principalement constitué de l'œil (et plus particulièrement la rétine), des nerfs optiques, du chiasma optique, du tractus optique, du corps genouillé latéral, des radiations optiques et du cortex visuel. En première approximation, l'œil peut être assimilé à un appareil photographique.
Perception des visagesLa perception des visages désigne le processus cognitif par lequel le cerveau analyse une pour y détecter et identifier un visage. La perception des visages fait appel à une aire cérébrale spécialisée, spécificité du genre humain. Le rôle fondamental que tient le visage dans la communication verbale et non verbale est à l'origine d'une faculté très développée chez l'être humain et les autres primates qui consiste à pouvoir identifier très rapidement un visage dans son environnement et être capable d'en reconnaître l'identité particulière parmi plusieurs centaines d'autres.