Retouche numériqueImage editing encompasses the processes of altering s, whether they are digital photographs, traditional photo-chemical photographs, or illustrations. Traditional analog image editing is known as photo retouching, using tools such as an airbrush to modify photographs or editing illustrations with any traditional art medium. Graphic software programs, which can be broadly grouped into vector graphics editors, raster graphics editors, and 3D modelers, are the primary tools with which a user may manipulate, enhance, and transform images.
Fonction spécialeL'analyse mathématique regroupe sous le terme de fonctions spéciales un ensemble de fonctions analytiques non élémentaires, qui sont apparues au comme solutions d'équations de la physique mathématique, particulièrement les équations aux dérivées partielles d'ordre deux et quatre. Comme leurs propriétés ont été étudiées extensivement (et continuent de l'être), on dispose à leur sujet d'une multitude d'informations.
Application linéaireEn mathématiques, une application linéaire (aussi appelée opérateur linéaire ou transformation linéaire) est une application entre deux espaces vectoriels qui respecte l'addition des vecteurs et la multiplication scalaire, et préserve ainsi plus généralement les combinaisons linéaires. L’expression peut s’utiliser aussi pour un morphisme entre deux modules sur un anneau, avec une présentation semblable en dehors des notions de base et de dimension. Cette notion étend celle de fonction linéaire en analyse réelle à des espaces vectoriels plus généraux.
Fonction circulaire réciproqueLes fonctions circulaires réciproques, ou fonctions trigonométriques inverses, sont les fonctions réciproques des fonctions circulaires, pour des intervalles de définition précis. Les fonctions réciproques des fonctions sinus, cosinus, tangente, cotangente, sécante et cosécante sont appelées arc sinus, arc cosinus, arc tangente, arc cotangente, arc sécante et arc cosécante. Les fonctions circulaires réciproques servent à obtenir un angle à partir de l'une quelconque de ses lignes trigonométriques, mais aussi à expliciter les primitives de certaines fonctions.
Problème inversevignette|une somme de plusieurs nombres donne le nombre 27, mais peut-on les deviner à partir de 27 ? En science, un problème inverse est une situation dans laquelle on tente de déterminer les causes d'un phénomène à partir des observations expérimentales de ses effets. Par exemple, en sismologie, la localisation de l'origine d'un tremblement de terre à partir de mesures faites par plusieurs stations sismiques réparties sur la surface du globe terrestre est un problème inverse.
Numéro atomique400px|droite Le numéro atomique (Z) représente, en chimie et en physique, le nombre de protons d'un atome. Ce dernier peut être schématisé, en première approche, par une agglomération compacte (noyau atomique) de protons (p+) et de neutrons (n), autour de laquelle circulent des électrons (e−). Dans un atome de charge électrique neutre, le nombre d'électrons est égal au numéro atomique. Comme les protons sont les seuls éléments du noyau avec une charge, le nombre de protons est égal au nombre d'électrons.
Traitement du signalLe traitement du signal est la discipline qui développe et étudie les techniques de traitement, d'analyse et d' des . Parmi les types d'opérations possibles sur ces signaux, on peut dénoter le contrôle, le filtrage, la compression et la transmission de données, la réduction du bruit, la déconvolution, la prédiction, l'identification, la classification Bien que cette discipline trouve son origine dans les sciences de l'ingénieur (particulièrement l'électronique et l'automatique), elle fait aujourd'hui largement appel à de nombreux domaines des mathématiques, comme la , les processus stochastiques, les espaces vectoriels et l'algèbre linéaire et des mathématiques appliquées, notamment la théorie de l'information, l'optimisation ou encore l'analyse numérique.
Théorème fondamental des fonctions symétriquesEn mathématiques, et plus particulièrement en algèbre commutative, le théorème fondamental des fonctions symétriques, souvent appelé « théorème fondamental des polynômes symétriques » ou « théorème de Newton », stipule que tout polynôme symétrique en n indéterminées à coefficients dans un anneau (commutatif) A s'exprime de façon unique par une fonction polynomiale des n polynômes symétriques élémentaires. Autrement dit, les n polynômes symétriques élémentaires forment une partie génératrice de l'algèbre des polynômes symétriques en n indéterminées sur A et sont algébriquement indépendants sur A.
Ring of symmetric functionsIn algebra and in particular in algebraic combinatorics, the ring of symmetric functions is a specific limit of the rings of symmetric polynomials in n indeterminates, as n goes to infinity. This ring serves as universal structure in which relations between symmetric polynomials can be expressed in a way independent of the number n of indeterminates (but its elements are neither polynomials nor functions). Among other things, this ring plays an important role in the representation theory of the symmetric group.
Assurance qualitéOn désigne par assurance qualité un moyen d'obtenir confiance dans l'assurance de la qualité c'est-à-dire dans l'aptitude de la société ou de l'organisation à satisfaire le niveau de qualité désiré. Le terme « assurance qualité » qui élide les articles naturellement présents dans la langue française est très commun du fait que le concept a été importé (anglicisme) de la langue anglaise où l'on parle de Quality assurance. Le terme assurance a donc ici la valeur de confiance que lui donne la langue anglaise.