Théorie supersymétrique de la dynamique stochastiqueLa théorie supersymétrique de la dynamique stochastique (TSDS) est une théorie exacte des équations différentielles (partielles) stochastiques (EDS). Elle représente une classe de modèles mathématiques très large qui décrit, en particulier, tous les systèmes dynamiques à temps continu, avec et sans bruit.
Angular displacementThe angular displacement (symbol θ, , or φ), also called angle of rotation or rotational displacement, of a physical body is the angle (in units of radians, degrees, turns, etc.) through which the body rotates (revolves or spins) around a centre or axis of rotation. Angular displacement may be signed, indicating the sense of rotation (e.g., clockwise); it may also be greater (in absolute value) than a full turn. When a body rotates about its axis, the motion cannot simply be analyzed as a particle, as in circular motion it undergoes a changing velocity and acceleration at any time.
Andreï Markov (mathématicien)Andreï Andreïevitch Markov (en Андрей Андреевич Марков) (1856-1922) est un mathématicien russe. Il est considéré comme le fondateur de la théorie des processus stochastiques. La mère d'Andreï Markov, Nadejda Petrovna, est la fille d'un ouvrier d'État. Son père, Andreï Grigorievitch Markov, membre de la petite noblesse, sert dans le département des forêts, puis devient gestionnaire de domaine privé. Dans ses premières années, Markov est en mauvaise santé et jusqu'à l'âge de dix ans, il ne peut marcher qu'à l'aide de béquilles.
Temps (physique)En physique, le temps est défini par une mesure : le temps est ce que mesure une horloge. Une horloge, dans le sens physique du terme, est un instrument de mesure fondé sur un phénomène périodique. Les horloges mesurent des durées, et non un temps absolu, ce concept suffit pour tous les calculs physiques. Le temps est une quantité physique fondamentale dénotée par le symbole . En physique classique, non relativiste, c'est une quantité scalaire.
Intégrale de StratonovichEn calcul stochastique, l'intégrale de Stratonovich (aussi intégrale de Fisk-Stratonovich) est un type d'intégrale stochastique. Contrairement à l'intégrale d'Itô, où seul le point final gauche de l'intervalle de décomposition est nécessaire pour la construction dans l'intégrale de Stratonovich, on utilise la moyenne arithmétique des extrémités gauche et droite L'avantage de l'intégrale de Stratonovich sur l'intégrale d'Itô est que la formule d'Itô n'a que des différentiels du premier ordre.