LTE (réseaux mobiles)Le LTE (Long Term Evolution) est une évolution des normes de téléphonie mobile GSM/EDGE, CDMA2000, TD-SCDMA et UMTS. La norme LTE, définie par le consortium 3GPP, a d'abord été considérée comme une norme de troisième génération « 3.9G » (car proche de la 4G), spécifiée dans le cadre des technologies IMT-2000, car dans les « versions 8 et 9 » de la norme, elle ne satisfaisait pas toutes les spécifications techniques imposées pour les normes 4G par l'Union internationale des télécommunications (UIT).
Digital signal (signal processing)In the context of digital signal processing (DSP), a digital signal is a discrete time, quantized amplitude signal. In other words, it is a sampled signal consisting of samples that take on values from a discrete set (a countable set that can be mapped one-to-one to a subset of integers). If that discrete set is finite, the discrete values can be represented with digital words of a finite width. Most commonly, these discrete values are represented as fixed-point words (either proportional to the waveform values or companded) or floating-point words.
Modulation de fréquenceright|Illustration de modulation en amplitude et en fréquence. La modulation de fréquence ou MF (FM en anglais) est un mode de modulation consistant à transmettre un signal par la modulation de la fréquence d'un signal porteur (porteuse). On parle de modulation de fréquence par opposition à la modulation d'amplitude. En modulation de fréquence, l'information est portée par une modification de la fréquence de la porteuse, et non par une variation d'amplitude.
Estimation spectraleL'estimation spectrale regroupe toutes les techniques d'estimation de la densité spectrale de puissance (DSP). Les méthodes d'estimation spectrale paramétriques utilisent un modèle pour obtenir une estimation du spectre. Ces modèles reposent sur une connaissance a priori du processus et peuvent être classées en trois grandes catégories : Modèles autorégressif (AR) Modèles à moyenne ajustée (MA) Modèles autorégressif à moyenne ajustée (ARMA). L'approche paramétrique se décompose en trois étapes : Choisir un modèle décrivant le processus de manière appropriée.
Échantillonnage (signal)L'échantillonnage consiste à prélever les valeurs d'un signal à intervalles définis, généralement réguliers. Il produit une suite de valeurs discrètes nommées échantillons. L'application la plus courante de l'échantillonnage est aujourd'hui la numérisation d'un signal variant dans le temps, mais son principe est ancien. Depuis plusieurs siècles, on surveille les mouvements lents en inscrivant, périodiquement, les valeurs relevées dans un registre : ainsi des hauteurs d'eau des marées ou des rivières, de la quantité de pluie.
Signal logiqueUn signal logique est un signal physique qui ne peut prendre que 2 valeurs, un niveau haut (en anglais "high" = "H"), et un niveau bas (en anglais "low" = "L"). Dans les ordinateurs et d'autres systèmes numériques, une forme d'onde qui alterne entre deux niveaux de tension représentant les deux états d'une valeur booléenne (0 et 1) est désigné comme un signal logique. Pour tout ce qui concerne la logique combinatoire ces deux niveaux suffisent.
Phase-shift keyingLe phase-shift keying (ou PSK, soit « modulation par changement de phase ») désigne une famille de formes de modulations numériques qui ont toutes pour principe de véhiculer de l'information binaire via la phase d'un signal de référence (porteuse), et exclusivement par ce biais. Comme pour toute technique de modulation numérique, la phase en question ne peut prendre qu'un nombre fini de valeurs. Chacune de ces valeurs représente un unique nombre binaire, dont la taille (et donc la quantité d'information transmise) dépend du nombre de valeurs possibles pour la phase.
Time–frequency analysisIn signal processing, time–frequency analysis comprises those techniques that study a signal in both the time and frequency domains simultaneously, using various time–frequency representations. Rather than viewing a 1-dimensional signal (a function, real or complex-valued, whose domain is the real line) and some transform (another function whose domain is the real line, obtained from the original via some transform), time–frequency analysis studies a two-dimensional signal – a function whose domain is the two-dimensional real plane, obtained from the signal via a time–frequency transform.
Multidimensional transformIn mathematical analysis and applications, multidimensional transforms are used to analyze the frequency content of signals in a domain of two or more dimensions. One of the more popular multidimensional transforms is the Fourier transform, which converts a signal from a time/space domain representation to a frequency domain representation. The discrete-domain multidimensional Fourier transform (FT) can be computed as follows: where F stands for the multidimensional Fourier transform, m stands for multidimensional dimension.
Transformation de Fourier discrèteEn mathématiques, la transformation de Fourier discrète (TFD) sert à traiter un signal numérique. Elle constitue un équivalent discret (c'est-à-dire pour un signal défini à partir d'un nombre fini d'échantillons) de la transformation de Fourier (continue) utilisée pour traiter un signal analogique. Plus précisément, la TFD est la représentation spectrale discrète dans le domaine des fréquences d'un signal échantillonné. La transformation de Fourier rapide est un algorithme particulier de calcul de la transformation de Fourier discrète.