Publication

Realtime Face Tracking and Animation

Sofien Bouaziz
2015
Thèse EPFL
Résumé

Capturing and processing human geometry, appearance, and motion is at the core of computer graphics, computer vision, and human-computer interaction. The high complexity of human geometry and motion dynamics, and the high sensitivity of the human visual system to variations and subtleties in faces and bodies make the 3D acquisition and reconstruction of humans in motion a challenging task. Digital humans are often created through a combination of 3D scanning, appearance acquisition, and motion capture, leading to stunning results in recent feature films. However, these methods typically require complex acquisition systems and substantial manual post-processing. As a result, creating and animating high-quality digital avatars entails long turn-around times and substantial production costs. Recent technological advances in RGB-D devices, such as Microsoft Kinect, brought new hopes for realtime, portable, and affordable systems allowing to capture facial expressions as well as hand and body motions. RGB-D devices typically capture an image and a depth map. This permits to formulate the motion tracking problem as a 2D/3D non-rigid registration of a deformable model to the input data. We introduce a novel face tracking algorithm that combines geometry and texture registration with pre-recorded animation priors in a single optimization. This led to unprecedented face tracking quality on a low cost consumer level device. The main drawback of this approach in the context of consumer applications is the need for an offline user-specific training. Robust and efficient tracking is achieved by building an accurate 3D expression model of the user's face who is scanned in a predefined set of facial expressions. We extended this approach removing the need of a user-specific training or calibration, or any other form of manual assistance, by modeling online a 3D user-specific dynamic face model. In complement of a realtime face tracking and modeling algorithm, we developed a novel system for animation retargeting that allows learning a high-quality mapping between motion capture data and arbitrary target characters. We addressed one of the main challenges of existing example-based retargeting methods, the need for a large number of accurate training examples to define the correspondence between source and target expression spaces. We showed that this number can be significantly reduced by leveraging the information contained in unlabeled data, i.e. facial expressions in the source or target space without corresponding poses. Finally, we present a novel realtime physics-based animation technique allowing to simulate a large range of deformable materials such as fat, flesh, hair, or muscles. This approach could be used to produce more lifelike animations by enhancing the animated avatars with secondary effects. We believe that the realtime face tracking and animation pipeline presented in this thesis has the potential to inspire numerous future research in the area of computer-generated animation. Already, several ideas presented in thesis have been successfully used in industry and this work gave birth to the startup company faceshift AG.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (44)
Capture de mouvement
La capture de mouvement (motion capture en anglais, parfois abrégé en mocap) est une technique permettant d'enregistrer les positions et rotations d'objets ou de membres d'êtres vivants, pour en contrôler une contrepartie virtuelle sur ordinateur (caméra, modèle 3D, ou avatar). Une restitution visuelle de ces mouvements en temps réel est faite via le moteur de rendu 3D de l'application interfacée avec le matériel utilisé qui peut les stocker dans un fichier d'animation de type BVH pour être traités ultérieurement dans un logiciel 3D classique (Maya, 3dsMax, XSI, Cinema4d, etc.
Animation par ordinateur
thumb|Réalisé avec le logiciel Blender, Caminandes est un exemple de court métrage animé par ordinateur. L’animation par ordinateur ou animation en images de synthèse est toute animation dont chaque photogramme est une entièrement créée avec un ordinateur. Certaines animations par ordinateur sont intégrées au sein de prise de vues réelles ou d'animations obtenues par d'autres procédés. C'est d'ailleurs comme ça que l'animation par ordinateur a commencé à être utilisée avant que des films ou des vidéos soient entièrement animés avec l'outil informatique.
Traditional animation
Traditional animation (or classical animation, cel animation, or hand-drawn animation) is an animation technique in which each frame is drawn by hand. The technique was the dominant form of animation in cinema until the end of the 20th century, when there was a shift to computer animation in the industry, specifically 3D computer animation. Animation production usually begins after a story is converted into an animation film script, from which a storyboard is derived.
Afficher plus
Publications associées (154)

From finger animation to full-body embodiment of avatars with different morphologies and proportions

Mathias Guy Delahaye

VR (Virtual Reality) is a real-time simulation that creates the subjective illusion of being in a virtual world.This thesis explores how integrating the user's body and fingers can be achieved and beneficial for the user to experience VR.At the advent of V ...
EPFL2023

Deep Learning for 3D Surface Modelling and Reconstruction

Benoît Alain René Guillard

In recent years, there has been a significant revolution in the field of deep learning, which has demonstrated its effectiveness in automatically capturing intricate patterns from large datasets. However, the majority of these successes in Computer Vision ...
EPFL2023

Real-time Self-contact Retargeting of Avatars down to Finger Level

Ronan Boulic, Bruno Herbelin, Mathias Guy Delahaye

We interact with the world through a body that includes hands and fingers. Likewise, providing an avatar allowing the control of a virtual body with fingers is an important step to improve the user experience in VR. When the user and their avatar skeleton ...
Jean-Marie Normand and Maki Sugimoto and Veronica Sundstedt2023
Afficher plus
MOOCs associés (10)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.