Ordered logitIn statistics, the ordered logit model (also ordered logistic regression or proportional odds model) is an ordinal regression model—that is, a regression model for ordinal dependent variables—first considered by Peter McCullagh. For example, if one question on a survey is to be answered by a choice among "poor", "fair", "good", "very good" and "excellent", and the purpose of the analysis is to see how well that response can be predicted by the responses to other questions, some of which may be quantitative, then ordered logistic regression may be used.
Modèle probitEn statistiques, le modèle probit est un modèle de régression binomiale. Le modèle probit a été introduit par Chester Bliss en 1934. C'est un cas particulier du modèle linéaire généralisé. Soit Y une variable aléatoire binaire (i.e. prenant pour valeur 0 ou 1) et X un vecteur de variables dont on suppose qu'il influence Y. On fait l'hypothèse que le modèle s'écrit de la manière suivante : où désigne la fonction de répartition de la loi normale centrée réduite. Régression logistique Catégorie:Modèle statist
Ordinal regressionIn statistics, ordinal regression, also called ordinal classification, is a type of regression analysis used for predicting an ordinal variable, i.e. a variable whose value exists on an arbitrary scale where only the relative ordering between different values is significant. It can be considered an intermediate problem between regression and classification. Examples of ordinal regression are ordered logit and ordered probit.
LogitLa fonction logit est une fonction mathématique utilisée principalement en statistiques et pour la régression logistique, en intelligence artificielle (réseaux neuronaux), en inférence bayésienne pour transformer les probabilités sur [0,1] en évidence sur R afin d'une part d'éviter des renormalisations permanentes, et d'autre part de rendre additive la formule de Bayes pour faciliter les calculs. Son expression est où p est défini sur ]0, 1[ La base du logarithme utilisé est sans importance, tant que celle-ci est supérieure à 1.
Modèle linéaire généraliséEn statistiques, le modèle linéaire généralisé (MLG) souvent connu sous les initiales anglaises GLM est une généralisation souple de la régression linéaire. Le GLM généralise la régression linéaire en permettant au modèle linéaire d'être relié à la variable réponse via une fonction lien et en autorisant l'amplitude de la variance de chaque mesure d'être une fonction de sa valeur prévue, en fonction de la loi choisie.
Discrete choiceIn economics, discrete choice models, or qualitative choice models, describe, explain, and predict choices between two or more discrete alternatives, such as entering or not entering the labor market, or choosing between modes of transport. Such choices contrast with standard consumption models in which the quantity of each good consumed is assumed to be a continuous variable. In the continuous case, calculus methods (e.g. first-order conditions) can be used to determine the optimum amount chosen, and demand can be modeled empirically using regression analysis.
Variable ordinalevignette|Exemple de représentation d’une variable ordinale : le niveau de certification par vignette Crit'Air. En statistique, une variable ordinale est une variable catégorielle dont les modalités sont totalement ordonnées, représentant chacune un niveau dans une gradation. Ces niveaux peuvent être codées par des lettres ou des chiffres sans que ceux-ci correspondent forcément à une grandeur numérique quantifiable, par exemple pour un degré de satisfaction, un grade militaire ou un numéro de version d’un logiciel.
Interval estimationIn statistics, interval estimation is the use of sample data to estimate an interval of possible values of a parameter of interest. This is in contrast to point estimation, which gives a single value. The most prevalent forms of interval estimation are confidence intervals (a frequentist method) and credible intervals (a Bayesian method); less common forms include likelihood intervals and fiducial intervals.
ÉconométrieL'économétrie est une branche de la science économique qui a pour objectif d'estimer et de tester les modèles économiques. L'économétrie en tant que discipline naît dans les années 1930 avec la création de la société d'économétrie par Irving Fisher et Ragnar Frisch (1930) et la création de la revue Econometrica (1933). Depuis lors, l'économétrie n'a cessé de se développer et de prendre une importance croissante au sein de la science économique. L'économétrie théorique se focalise essentiellement sur deux questions, l'identification et l'estimation statistique.
Multiplier (economics)In macroeconomics, a multiplier is a factor of proportionality that measures how much an endogenous variable changes in response to a change in some exogenous variable. For example, suppose variable x changes by k units, which causes another variable y to change by M × k units. Then the multiplier is M. Two multipliers are commonly discussed in introductory macroeconomics. Commercial banks create money, especially under the fractional-reserve banking system used throughout the world.