Algorithme de multiplication d'entiersLes algorithmes de multiplication permettent de calculer le résultat d'une multiplication. Graphiquement, il s'agit de transformer un rectangle multiplicateur × multiplicande en une ligne, en conservant le nombre d'éléments. Ce type de multiplication n'utilise que des additions et des multiplications ou des divisions par 2. Elle ne nécessite pas de connaître de table de multiplication (autre que la multiplication par 2).
Spline interpolationIn the mathematical field of numerical analysis, spline interpolation is a form of interpolation where the interpolant is a special type of piecewise polynomial called a spline. That is, instead of fitting a single, high-degree polynomial to all of the values at once, spline interpolation fits low-degree polynomials to small subsets of the values, for example, fitting nine cubic polynomials between each of the pairs of ten points, instead of fitting a single degree-ten polynomial to all of them.
Entier de Gaussthumb|Carl Friedrich Gauss. En mathématiques, et plus précisément, en théorie algébrique des nombres, un entier de Gauss est un nombre complexe dont la partie réelle et la partie imaginaire sont des entiers relatifs. Il s'agit formellement d'un élément de l'anneau des entiers quadratiques de l'extension quadratique des rationnels de Gauss L'ensemble des entiers de Gauss possède une structure forte. Comme tous les ensembles d'entiers algébriques, muni de l'addition et de la multiplication ordinaire des nombres complexes, il forme un anneau intègre, généralement noté , désignant ici l'unité imaginaire.
Anneau des entiersEn algèbre commutative, l'anneau des entiers est une construction que l'on peut obtenir à partir de tout corps de nombres en considérant ses éléments entiers. Par exemple, l'anneau des entiers de est . Il existe des algorithmes efficaces pour calculer cet anneau pour tout corps de nombres. La notion peut en fait être étendue à d'autres objets (notamment les corps de fonctions), et porte une interprétation géométrique. Élément entier Soit K un corps de nombres. Un élément de K est dit entier s'il est racine d'un polynôme unitaire à coefficients dans .
Famille nucléairevignette|Un couple et des enfants : la famille nucléaire Une famille nucléaire est une forme de structure familiale fondée sur la notion de couple, soit un « ensemble de deux personnes liées par une volonté de former une communauté matérielle et affective, potentiellement concrétisée par une relation sexuelle conforme à la loi ». La famille nucléaire correspond donc à une famille regroupant deux adultes mariés ou non avec ou sans enfant. Cette structure familiale se distingue de la famille élargie et de la famille polygame.
Valeurs familialesLes valeurs familiales sont un ensemble de conceptions sur la famille entretenues dans la société qui influencent le choix des objectifs familiaux, des modes d'organisation de la vie et des interactions au sein d'une famille. Au premier abord, avoir des valeurs familiales démontre d'après Anne Bourgeois et Jacques Légaré, la possession d'un certain attachement envers ce qui fonde la famille : selon eux, les enfants et la vie en couple. Les valeurs familiales font ainsi souvent référence à ce qui se passe au niveau des couples : cohabitation, mariages, ruptures, parentalité.
Polynômethumb|Courbe représentative d'une fonction cubique. En mathématiques, un polynôme est une expression formée uniquement de produits et de sommes de constantes et d'indéterminées, habituellement notées X, Y, Z... Ces objets sont largement utilisés en pratique, ne serait-ce que parce qu'ils donnent localement une valeur approchée de toute fonction dérivable (voir l'article Développement limité) et permettent de représenter des formes lisses (voir l'article Courbe de Bézier, décrivant un cas particulier de fonction polynomiale).
Algorithmethumb|Algorithme de découpe d'un polygone quelconque en triangles (triangulation). Un algorithme est une suite finie et non ambiguë d'instructions et d’opérations permettant de résoudre une classe de problèmes. Le domaine qui étudie les algorithmes est appelé l'algorithmique. On retrouve aujourd'hui des algorithmes dans de nombreuses applications telles que le fonctionnement des ordinateurs, la cryptographie, le routage d'informations, la planification et l'utilisation optimale des ressources, le , le traitement de textes, la bio-informatique L' algorithme peut être mis en forme de façon graphique dans un algorigramme ou organigramme de programmation.
Fonction triangulairevignette|Exemple de fonction triangulaire. Une fonction triangulaire (ou fonction triangle, fonction chapeau ou fonction tente) est une fonction dont la représentation graphique est un triangle. Souvent, c'est un triangle isocèle de hauteur 1 et de base 2 et dans ce cas, on s'y réfère comme la fonction triangulaire. Les fonctions triangulaires sont utiles en traitement du signal et en génie des systèmes de communication comme représentations idéalisées des signaux, et particulièrement la fonction triangulaire comme un opérateur intégral de noyau à partir de laquelle des signaux plus réalistes peuvent être dérivés, par exemple dans l'estimation de densités de noyaux.
Idéal fractionnairevignette|Richard Dedekind donne en 1876 la définition d'idéal fractionnaire. En mathématiques, et plus précisément en théorie des anneaux, un idéal fractionnaire est une généralisation de la définition d'un idéal. Ce concept doit son origine à la théorie algébrique des nombres. Pour résoudre certaines équations diophantiennes, cette théorie utilise des anneaux d'entiers généralisant celui des entiers relatifs.