Transformation de Fourier discrèteEn mathématiques, la transformation de Fourier discrète (TFD) sert à traiter un signal numérique. Elle constitue un équivalent discret (c'est-à-dire pour un signal défini à partir d'un nombre fini d'échantillons) de la transformation de Fourier (continue) utilisée pour traiter un signal analogique. Plus précisément, la TFD est la représentation spectrale discrète dans le domaine des fréquences d'un signal échantillonné. La transformation de Fourier rapide est un algorithme particulier de calcul de la transformation de Fourier discrète.
Test ZEn statistique, un test Z est un terme générique désignant tout test statistique dans lequel la statistique de test suit une loi normale sous l'hypothèse nulle. On considère un n-échantillon avec et un risque . Si l'on teste La statistique de test sous l'hypothèse nulle est : qui suit une loi normale Si , la réalisation de la statistique de test, est supérieur au quantile d'ordre de la loi alors on rejette l'hypothèse nulle. Si l'on teste Si est supérieur au quantile d'ordre de la loi alors on rejette l'hypothèse nulle.
Signification statistiquevignette|statistique En statistiques, le résultat d'études qui portent sur des échantillons de population est dit statistiquement significatif lorsqu'il semble exprimer de façon fiable un fait auquel on s'intéresse, par exemple la différence entre 2 groupes ou une corrélation entre 2 données. Dit autrement, il est alors très peu probable que ce résultat apparent soit en fait trompeur s'il n'est pas dû, par exemple, à un , trop petit ou autrement non représentatif (surtout si la population est très diverse).
Transformation de Fourierthumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.
Test t de WelchEn statistique, le test t de Welch est une adaptation du test t de Student. Il peut être utilisé notamment pour tester statistiquement l’hypothèse d’égalité de deux moyennes avec deux échantillons de variances inégales. Il s'agit en fait d'une solution approchée du problème de Behrens–Fisher. Sa statistique de test est donnée par la formule suivante : où , s et N correspondent respectivement à la moyenne d'un échantillon, à l'estimateur non-biaisé de sa variance et à la taille de l'échantillon.
Fractional Fourier transformIn mathematics, in the area of harmonic analysis, the fractional Fourier transform (FRFT) is a family of linear transformations generalizing the Fourier transform. It can be thought of as the Fourier transform to the n-th power, where n need not be an integer — thus, it can transform a function to any intermediate domain between time and frequency. Its applications range from filter design and signal analysis to phase retrieval and pattern recognition.
Test FEn statistique, un test F est un terme générique désignant tout test statistique dans lequel la statistique de test suit la loi de Fisher sous l'hypothèse nulle. Ce type de tests est souvent utilisé lors de la comparaison de modèles statistiques qui ont été ajustés sur un ensemble de données, afin d'identifier le modèle qui correspond le mieux à la population à partir de laquelle les données ont été échantillonnées. Les tests F dits "exacts" sont ceux pour lesquels les modèles ont été ajustés aux données par la méthode des moindres carrés.
Statistique descriptiveLa statistique descriptive est la branche des statistiques qui regroupe les nombreuses techniques utilisées pour décrire un ensemble relativement important de données. L'objectif de la statistique descriptive est de décrire, c'est-à-dire de résumer ou représenter, par des statistiques, les données disponibles quand elles sont nombreuses. Toute description d'un phénomène nécessite d'observer ou de connaître certaines choses sur ce phénomène. Les observations disponibles sont toujours constituées d'ensemble d'observations synchrones.
Test du rapport de vraisemblanceEn statistiques, le test du rapport de vraisemblance est un test statistique qui permet de tester un modèle paramétrique contraint contre un non contraint. Si on appelle le vecteur des paramètres estimés par la méthode du maximum de vraisemblance, on considère un test du type : contre On définit alors l'estimateur du maximum de vraisemblance et l'estimateur du maximum de vraisemblance sous .
Transformation de HilbertEn mathématiques et en traitement du signal, la transformation de Hilbert, ici notée , d'une fonction de la variable réelle est une transformation linéaire qui permet d'étendre un signal réel dans le domaine complexe, de sorte qu'il vérifie les équations de Cauchy-Riemann. La transformation de Hilbert tient son nom en honneur du mathématicien David Hilbert, mais fut principalement développée par le mathématicien anglais G. H. Hardy.