IsoplètheUne isoplèthe (ou une isoligne, ou un isarithme) est une ligne joignant des points d'égale valeur sur une carte. Elle sépare des zones de faibles valeurs et des zones de valeurs plus élevées. En thermodynamique, c'est une courbe dans le diagramme de phase indiquant une même composition. (Tous les termes de la liste ci-dessous sont féminins.
Régularisation (mathématiques)vignette|Les courbes bleues et vertes correspondent à deux modèles differents, tous les deux étant des solutions possibles du problème consistant à décrire les coordonnées de tous les points rouges. L'application d'une régularisation favorise le modèle moins complexe correspondant à la courbe verte. Dans le domaine des mathématiques et des statistiques, et plus particulièrement dans le domaine de l'apprentissage automatique, la régularisation fait référence à un processus consistant à ajouter de l'information à un problème, s'il est mal posé ou pour éviter le surapprentissage.
Système d'information géographiqueUn système d'information géographique ou SIG (en anglais, geographic information system ou GIS) est un système d'information conçu pour recueillir, stocker, traiter, analyser, gérer et présenter tous les types de données spatiales et géographiques. L’acronyme SIG est parfois utilisé pour définir les « sciences de l’information géographique » ou « études sur l’information géospatiale ». Cela se réfère aux carrières ou aux métiers qui impliquent l'usage de systèmes d’information géographique et, dans une plus large mesure, qui concernent les disciplines de la géo-informatique (ou géomatique).
Combinaison convexeEn géométrie affine, une combinaison convexe de certains points est un barycentre de ces points avec des coefficients tous positifs. L'ensemble des combinaisons convexes de ces points est donc leur enveloppe convexe. Soit E un espace affine réel (c'est-à-dire que les scalaires sont les nombres réels). Si et sont des points de E, une combinaison convexe des est un point de la forme où sont des réels positifs de somme 1. Le problème du point extrême consiste à déterminer si un point P0 est ou non une combinaison convexe de points Pi, 1 ≤ i ≤ n.
B-splineEn mathématiques, une B-spline est une combinaison linéaire de splines positives à support compact minimal. Les B-splines sont la généralisation des courbes de Bézier, elles peuvent être à leur tour généralisées par les NURBS. Étant donné m+1 nœuds ti dans [0, 1] avec une courbe spline de degré est une courbe paramétrique composée de fonctions B-splines de degré n où les Pi forment un polygone appelé polygone de contrôle ; le nombre de points de contrôle composant ce polygone est égal à m-n.
Fonction distance signéeIn mathematics and its applications, the signed distance function (or oriented distance function) is the orthogonal distance of a given point x to the boundary of a set Ω in a metric space, with the sign determined by whether or not x is in the interior of Ω. The function has positive values at points x inside Ω, it decreases in value as x approaches the boundary of Ω where the signed distance function is zero, and it takes negative values outside of Ω. However, the alternative convention is also sometimes taken instead (i.
Carte topographiquethumb|Un exemple de carte topographique américaine Une carte topographique est une carte à échelle réduite représentant le relief déterminé par altimétrie et les aménagements humains d'une région géographique de manière précise et détaillée sur un plan horizontal. Les autres cartes à échelle plus grande et les plans de ville ne sont pas des cartes topographiques car ils ne respectent pas l'échelle de réduction pour représenter les routes. En effet, l'usage principal de ces cartes routières et des plans est le repérage d'un tracé routier.
Ensemble convexeUn objet géométrique est dit convexe lorsque, chaque fois qu'on y prend deux points et , le segment qui les joint y est entièrement contenu. Ainsi un cube plein, un disque ou une boule sont convexes, mais un objet creux ou bosselé ne l'est pas. On suppose travailler dans un contexte où le segment reliant deux points quelconques et a un sens (par exemple dans un espace affine sur R — en particulier dans un espace affine sur C — ou dans un ).
Regularized least squaresRegularized least squares (RLS) is a family of methods for solving the least-squares problem while using regularization to further constrain the resulting solution. RLS is used for two main reasons. The first comes up when the number of variables in the linear system exceeds the number of observations. In such settings, the ordinary least-squares problem is ill-posed and is therefore impossible to fit because the associated optimization problem has infinitely many solutions.
Conical combinationGiven a finite number of vectors in a real vector space, a conical combination, conical sum, or weighted sum of these vectors is a vector of the form where are non-negative real numbers. The name derives from the fact that a conical sum of vectors defines a cone (possibly in a lower-dimensional subspace). The set of all conical combinations for a given set S is called the conical hull of S and denoted cone(S) or coni(S). That is, By taking k = 0, it follows the zero vector (origin) belongs to all conical hulls (since the summation becomes an empty sum).