Ondelettethumb|Ondelette de Daubechies d'ordre 2. Une ondelette est une fonction à la base de la décomposition en ondelettes, décomposition similaire à la transformée de Fourier à court terme, utilisée dans le traitement du signal. Elle correspond à l'idée intuitive d'une fonction correspondant à une petite oscillation, d'où son nom. Cependant, elle comporte deux différences majeures avec la transformée de Fourier à court terme : elle peut mettre en œuvre une base différente, non forcément sinusoïdale ; il existe une relation entre la largeur de l'enveloppe et la fréquence des oscillations : on effectue ainsi une homothétie de l'ondelette, et non seulement de l'oscillation.
Discrete wavelet transformIn numerical analysis and functional analysis, a discrete wavelet transform (DWT) is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information (location in time). Haar wavelet The first DWT was invented by Hungarian mathematician Alfréd Haar. For an input represented by a list of numbers, the Haar wavelet transform may be considered to pair up input values, storing the difference and passing the sum.
Wavelet transformIn mathematics, a wavelet series is a representation of a square-integrable (real- or complex-valued) function by a certain orthonormal series generated by a wavelet. This article provides a formal, mathematical definition of an orthonormal wavelet and of the integral wavelet transform. A function is called an orthonormal wavelet if it can be used to define a Hilbert basis, that is a complete orthonormal system, for the Hilbert space of square integrable functions.
Gabor waveletGabor wavelets are wavelets invented by Dennis Gabor using complex functions constructed to serve as a basis for Fourier transforms in information theory applications. They are very similar to Morlet wavelets. They are also closely related to Gabor filters. The important property of the wavelet is that it minimizes the product of its standard deviations in the time and frequency domain. Put another way, the uncertainty in information carried by this wavelet is minimized.
Ondelette de HaarL'ondelette de Haar, ou fonction de Rademacher, est une ondelette créée par Alfréd Haar en 1909. On considère que c'est la première ondelette connue. Il s'agit d'une fonction constante par morceaux, ce qui en fait l'ondelette la plus simple à comprendre et à implémenter. L'ondelette de Haar peut être généralisée par ce qu'on appelle le système de Haar. La fonction-mère des ondelettes de Haar est une fonction constante par morceaux : La fonction d'échelle associée est alors une fonction porte : Le système de Haar est une suite de fonctions continues par morceaux, appartenant à pour .
Morlet waveletIn mathematics, the Morlet wavelet (or Gabor wavelet) is a wavelet composed of a complex exponential (carrier) multiplied by a Gaussian window (envelope). This wavelet is closely related to human perception, both hearing and vision. Wavelet#History In 1946, physicist Dennis Gabor, applying ideas from quantum physics, introduced the use of Gaussian-windowed sinusoids for time-frequency decomposition, which he referred to as atoms, and which provide the best trade-off between spatial and frequency resolution.
Marche aléatoireEn mathématiques, en économie et en physique théorique, une marche aléatoire est un modèle mathématique d'un système possédant une dynamique discrète composée d'une succession de pas aléatoires, ou effectués « au hasard ». On emploie également fréquemment les expressions marche au hasard, promenade aléatoire ou random walk en anglais. Ces pas aléatoires sont de plus totalement décorrélés les uns des autres ; cette dernière propriété, fondamentale, est appelée caractère markovien du processus, du nom du mathématicien Markov.
Random effects modelIn statistics, a random effects model, also called a variance components model, is a statistical model where the model parameters are random variables. It is a kind of hierarchical linear model, which assumes that the data being analysed are drawn from a hierarchy of different populations whose differences relate to that hierarchy. A random effects model is a special case of a mixed model.
JPEG 2000JPEG 2000 ou ISO/CEI 15444-1, abrégé JP2 (quelquefois J2K), est une norme de compression d’ commune à l’ISO, la CEI et l’UIT-T, développée entre 1997 et 2000, et créée par le groupe de travail Joint Photographic Experts Group. Depuis mai 2015, il est officiellement reconnu par l'ISO / CEI et l'UIT-T sous le code ISO/IEC CD 15444. JPEG 2000 peut travailler avec ou sans perte, en utilisant des transformées en ondelettes (méthode d’analyse mathématique du signal), dont la décomposition est similaire à la transformée de Fourier à court terme.
Vecteur aléatoireUn vecteur aléatoire est aussi appelé variable aléatoire multidimensionnelle. Un vecteur aléatoire est une généralisation à n dimensions d'une variable aléatoire réelle. Alors qu'une variable aléatoire réelle est une fonction qui à chaque éventualité fait correspondre un nombre réel, le vecteur aléatoire est une fonction X qui à chaque éventualité fait correspondre un vecteur de : où ω est l'élément générique de Ω, l'espace de toutes les éventualités possibles. Les applications X, ...